
1. Affine toric varieties

First some stuff about algebraic groups:

Definition 1.1. Let G be a group. We say that G is an algebraic
group if G is a quasi-projective variety and the two maps m : G×G −→
G and i : G −→ G, where m is multiplication and i is the inverse map,
are both morphisms.

It is easy to give examples of algebraic groups. Consider the group
G = GLn(K). In this case G is an open subset of An2

, the complement
of the zero locus of the determinant, which expands to a polynomial.
Matrix multiplication is obviously a morphism, and the inverse map is
a morphism by Cramer’s rule. Note that there are then many obvious
algebraic subgroups; the orthogonal groups, special linear group and so
on. Clearly PGLn(K) is also an algebraic group; indeed the quotient of
an algebraic group by a closed normal subgroup is an algebraic group.
All of these are affine algebraic groups.

Definition 1.2. Let G be an algebraic group. If G is affine then we say
that G is a linear algebraic group. If G is projective and connected
then we say that G is an abelian variety.

Note that any finite group is an algebraic group (both affine and
projective). It turns out that any affine group is always a subgroup of
a matrix group, so that the notation makes sense.

Definition 1.3. The group Gm is GL1(K). The group Ga is the sub-
group of GL2(K) of upper triangular matrices with ones on the diago-
nal.

Note that as a group Gm is the set of units in K under multiplication
and Ga is equal to K under addition, and that both groups are affine
of dimension 1; in fact they are the only linear algebraic groups of
dimension one, up to isomorphism.

Note that if we are given a linear algebraic group G, we get a Hopf
algebra A. Indeed if A is the coordinate ring ofG, then A is aK-algebra
and there are maps

A −→ A⊗ A and A −→ A,

induced by the multiplication and inverse map for G (if you don’t know
what a Hopf algebra is, you can unwind the definitions and take this
as the definition of a Hopf algebra).

It is not hard to see that the product of two algebraic groups is an
algebraic group.
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Definition 1.4. The algebraic group Gk
m is called a torus.

So a torus in algebraic geometry is just a product of copies of Gm.
In fact one can define what it means to be a group scheme:

Definition 1.5. Let π : X −→ S be a morphism of schemes. We
say that X is a group scheme over S, if there are three morphisms,
e : S −→ X, µ : X ×

S
X −→ X and i : X −→ X over S which satisfy

the obvious axioms.

We can define a group scheme Gm,SpecZ over SpecZ, by taking

SpecZ[x, x−1].

Given any scheme S, this gives us a group scheme Gm,S over S, by
taking the fibre square. In the case when S = Spec k, k an algebraically
closed field, then Gm,Spec k is t(Gm), the scheme associated to the quasi-
projective variety Gm. We will be somewhat sloppy and not be too
careful to distinguish the two cases.

Similarly we can take

Ga,SpecZ = SpecZ[x].

Definition 1.6. Let G be an algebraic group and let X be a variety
acted on by G, π : G×X −→ X. We say that the action is algebraic
if π is a morphism.

For example the natural action of PGLn(K) on Pn is algebraic, and
all the natural actions of an algebraic group on itself are algebraic.

Definition 1.7. We say that a quasi-projective variety X is a toric
variety if X is irreducible and normal and there is a dense open subset
U isomorphic to a torus, such that the natural action of U on itself
extends to an action on the whole of X.

For example, any torus is a toric variety. An
k is a toric variety. The

natural torus is the complement of the coordinate hyperplanes and the
natural action is as follows

((t1, t2, . . . , tn), (a1, a2, . . . , an)) −→ (t1a1, t2a2, . . . , tnan).

More generally, Pn is a toric variety. The action is just the natural
action induced from the action above. A product of toric varieties is
toric.

One thing to keep track of are the closures of the orbits. For the torus
there is one orbit. For affine space and projective space the closure of
the orbits are the coordinate subspaces.
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Definition 1.8. Let M be a lattice and let N = Hom(M,Z) be the
dual lattice.

A strongly convex rational polyhedral cone σ ⊂ NR = N ⊗
Z
R

is

• a cone, that is, if v ∈ σ and λ ∈ R, λ ≥ 0 then λv ∈ σ;
• polyhedral, that is, σ is the intersection of finitely many half

spaces;
• rational, that is, the half spaces are defined by equations with

rational coefficients;
• strongly convex, that is, σ contains no linear spaces other

than the origin.

One can reformulate some of the parts of the definition of a strongly
rational polyhedral cone. For example, σ is a polyhedral cone if and
only if σ is the intersection of finitely many half spaces which are defined
by homogeneous linear polynomials. σ is a strongly convex polyhedral
cone if and only if σ is a cone over finitely many vectors which lie in a
common half space (in other words a strongly convex polyhedral cone
is the same as a cone over a polytope). And so on.

We first give the recipe of how to go from a fan to an affine toric
variety. Suppose we start with σ. Form the dual cone

σ̌ = {u ∈MR | 〈u, v〉 ≥ 0, v ∈ σ }.
Now take the integral points,

Sσ = σ̌ ∩M.

Then form the (semi)group algebra,

Aσ = K[Sσ].

Finally form the affine variety,

Uσ = SpecAσ.

Given a semigroup S, to form the semigroup algebra K[S], start
with a K-vector space with basis χu, as u ranges over the elements of
S. Given u and v ∈ S define the product

χu · χv = χu+v,

and extend this linearly to the whole of K[S].
Note that K[S] is an integral domain so that Uσ is irreducible.

Example 1.9. For example, suppose we start with M = Z2, σ the
cone spanned by (1, 0) and (0, 1), inside NR = R2. Then σ̌ is spanned
by the same vectors in MR. Therefore Sσ = N2, the group algebra is
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C[x, y] and so we get A2. Similarly if we start with the cone spanned
by e1, e2, . . . , en inside NR = Rn then we get An.

Now suppose we start with σ = {0} in R. Then σ̌ is the whole of
MR, Sσ is the whole of M = Z and so C[M ] = C[x, x−1]. Taking Spec
we get the torus Gm.

More generally we always get a torus of dimension n if we take the
origin in Rn. Note that if τ ⊂ σ is a face then σ̌ ⊂ τ̌ is also a face so
that Uτ ⊂ Uσ is an open subset. In fact

Lemma 1.10. Let τ ⊂ σ ⊂ NR be a face of the cone σ.
Then we may find u ∈ Sσ such that

(1) τ = σ ∩ u⊥,
(2)

Sτ = Sσ + Z+(−u),

(3) Aτ is a localisation of Aσ, and
(4) Uτ is a principal open subset of Uσ.

Proof. The fact that every face of a cone is cut out by a hyperplane is
a standard fact in convex geometry and this is (1). For (2) note that
the RHS is contained in the LHS by definition of a cone. If w ∈ Sτ
then w+ p ·u is in σ̌ for any p sufficiently large. If we take p to be also
an integer this shows that w belongs to the RHS.

Let χu be the monomial corresponding to u. (2) implies that Aτ is
the localisation of Aσ along χu. This is (3) and (4) is immediate from
(3). �

Since the cone {0} is a face of every cone, the affine scheme associated
to a cone always contains a torus, which is then dense.

Definition 1.11. Let S ⊂ T be a subsemigroup of the semigroup T .
We say that S is saturated in T if whenever u ∈ T and p · u ∈ S for
some positive integer p, then u ∈ S.

Given a subsemigroup S ⊂ M saturation is always with respect to
M .

Lemma 1.12. Suppose that S ⊂M .
Then K[S] is integrally closed if and only if S is saturated.

Proof. Suppose that K[S] is integrally closed.
Pick u ∈M such that v = p · u ∈ S for some positive integer p. Let

b = χu and a = χv ∈ K[S]. Then

bp = χpu = χv = a,
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so that b is a root of the monic polynomial xp − a ∈ K[S][x]. As we
are assuming that K[S] is integrally closed this implies that b ∈ K[S]
which implies that u ∈ S. Thus S is saturated.

Now suppose that S is saturated. As K[S] ⊂ K[M ] and the latter
is integrally closed, the integral closure L of K[S] sits in the middle,
K[S] ⊂ L ⊂ K[M ]. The torus acts naturally on K[M ] and this ac-
tion fixes K[S], so that it also fixes L. L is therefore a direct sum of
eigenspaces, which are all one dimensional (a set of commuting diag-
onalisable matrices are simultaneously diagonalisable) that is L has a
basis of the form χu, as u ranges over some subset of M . It suffices to
prove that u ∈ S.

Since b = χu is integral over K[S], we may find k1, k2, . . . , kp ∈ K[S]
such that

bp + k1b
p−1 + · · ·+ kp = 0.

We may assume that every term is in the same eigenspace as bp. We
may also assume that kp 6= 0. As bp and kp 6= 0 belong to the same
eigenspace, which is one dimensional, we get bp ∈ K[S]. Thus pu ∈ S
and so u ∈ S as S is saturated. Thus b ∈ K[S] and K[S] is integrally
closed. �

Note that Sσ is automatically saturated, as σ̌ is a rational polyhedral
cone. In particular Uσ is normal.

Example 1.13. Suppose that we start with the semigroup S generated
by 2 and 3 inside M = Z. Then

K[S] = K[t2, t3] = K[x, y]/〈y2 − x3〉.

Note that this does come with an action of Gm;

(t, x, y) −→ (t2x, t3y).

However the curve V (y2 − x3) ⊂ A2 is not normal.

In fact some authorities drop the requirement that a toric variety is
normal.

An action of the torus corresponds to a map of algebras

Aσ −→ Aσ ⊗
K
A0,

which is naturally the restriction of

A0 −→ A0 ⊗
K
A0.

It is straightforward to check that the restricted map does land in
Aσ ⊗

K
A0.
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Lemma 1.14 (Gordan’s Lemma). Let σ ⊂ NR be a strongly convex
rational polyhedral cone.

Then Sσ is a finitely generated semigroup.

Proof. Pick vectors v1, v2, . . . , vn ∈ Sσ which generate the cone σ̌. Con-
sider the set

K = { v ∈M | v =
∑

tivi, ti ∈ [0, 1] }.

Then K is compact. As M is discrete K ∩M is finite. I claim that
the elements of K ∩M generate the semigroup Sσ. Pick u ∈ Sσ. Since
u ∈ σ̌ and v1, v2, . . . , vn generate the cone, we may write

u =
∑

λivi,

where λi ∈ Q. Let ni = xλiy. Then

u−
∑

nivi =
∑

(λi − xλiy)vi ∈ K ∩M.

As v1, v2, . . . , vn ∈ K ∩M the result follows. �

Gordan’s lemma (1.14) implies that Uσ is of finite type over K. So
Uσ is an affine toric variety.

Example 1.15. Suppose we start with the cone spanned by e2 and 2e1−
e2. The dual cone is the cone spanned by f1 and f1 + 2f2. Generators
for the semigroup are f1, f1 + f2 and f1 + 2f2. The corresponding
group algebra is Aσ = K[x, xy, xy2]. Suppose we call u = x, v = xy and
w = xy2. Then v2 = x2y2 = x(xy2) = uw. Therefore the corresponding
affine toric variety is given as the zero locus of v2 − uw in A3.
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