HWK \#4, DUE WEDNESDAY 03/14

1. Let $F^{\prime} \subset \mathbb{R}^{3}$ be the fan whose one dimensional cones are generated by

$$
\begin{array}{lll}
v_{1}=(1,0,0) & v_{2}=(0,1,0) & v_{3}=(0,0,1) \\
v_{4}=(0,-1,-1) & v_{5}=(-1,0,-1) & v_{6}=(-2,-1,0)
\end{array}
$$

and whose maximal cones are

$$
\begin{array}{llll}
\left\langle v_{1}, v_{2}, v_{3}\right\rangle & \left\langle v_{1}, v_{2}, v_{4}\right\rangle & \left\langle v_{2}, v_{4}, v_{5}\right\rangle & \left\langle v_{2}, v_{3}, v_{5}\right\rangle \\
\left\langle v_{3}, v_{5}, v_{6}\right\rangle & \left\langle v_{1}, v_{3}, v_{6}\right\rangle & \left\langle v_{1}, v_{4}, v_{6}\right\rangle & \left\langle v_{4}, v_{5}, v_{6}\right\rangle .
\end{array}
$$

Let F be the fan obtained from F^{\prime} by inserting the vectors $v_{7}=$ $(-1,-1,-1)$ and $v_{8}=(-2,-1,-1)$ and subdividing accordingly.
(i) Show that X is a smooth toric variety.
(ii) Show that if $D=\sum a_{i} D_{i}$ is a base point free T-Cartier divisor then $D \sim 0$. (Hint: focus on the three cones $\left\langle v_{1}, v_{2}, v_{4}\right\rangle,\left\langle v_{2}, v_{3}, v_{5}\right\rangle$ and $\left\langle v_{1}, v_{3}, v_{6}\right\rangle$.)
(iii) Show that X is not a projective variety.
2. Hartshorne: Chapter II, 7.8-7.12. (Assume that X is connected in (II.7.9). Change the condition in (II.7.12) to the statement that neither one contains an irreducible component of the other to avoid trivial counterexamples).
3. Challenge Problem Chapter II, 7.13.

