HWK \#3, DUE WEDNESDAY 03/07

1. Hartshorne (II.6.4).
2. Hartshorne (II.6.5).
3. Hartshorne (II.6.5) parts (b) and (c), when $r=2$ and $r=3$, but now using the theory of toric varieties.
4. Let X be a variety. We say that a Weil divisor D is \mathbb{Q}-Cartier if there is a non-zero integer m such that the Weil divisor $m D$ is Cartier. We say that X is \mathbb{Q}-factorial if every Weil divisor is \mathbb{Q}-Cartier.
Let $\sigma \subset N_{\mathbb{R}}$ be a cone. We say that σ is simplicial if the primitive generators $v_{1}, v_{2}, \ldots, v_{k}$ of the one dimensional faces of σ are independent vectors in the vector space $N_{\mathbb{R}}$.
Let $X=X(F)$ be the toric variety associated to a fan F. Show that X is \mathbb{Q}-factorial if and only if every every cone $\sigma \in F$ is simplicial.
5. Hartshorne (II.6.8).
6. Let C be a smooth projective curve. The degree of a Cartier divisor $D=\sum n_{i} P_{i}$ on C is the integer $\sum n_{i}$. If L is a line bundle on C (aka invertible sheaf) the degree of L is the degree of any divisor D such that $L=\mathcal{O}_{C}(D)$.
Let X be a variety and let $C \subset X$ be a projective curve. Let $C^{\prime} \longrightarrow C$ be the normalisation of C, so that C^{\prime} is a smooth projective curve. Let $i: C^{\prime} \longrightarrow X$ be the induced morphism. If L is a line bundle define the intersection number of L with C, denoted $L \cdot C$, as the degree of the line bundle $i^{*} L$ on C^{\prime}.
If D is a Cartier divisor define the intersection number of D with C, denoted $D \cdot C$, as the intersection number of the line bundle $\mathcal{O}_{X}(D)$ with C. We say that a Cartier divisor D (respectively line bundle L) is nef if the intersection number of D (respectively L) with every projective curve C in X is non-negative.
(i) Show that if we fix a projective curve C, then the natural map

$$
\operatorname{Pic}(X) \longrightarrow \mathbb{Z}
$$

which sends a line bundle L to the intersection number $L \cdot C$ is a group homomorphism.
(ii) Show that if $\left|L^{\otimes m}\right|$ is base point free (aka $L^{\otimes m}$ is globally generated) for some positive integer m, then L is nef.
(iii) Show that if X is a projective variety and L is an ample divisor then the intersection number of L with any curve $C \subset X$ is positive.
(iv) Show that the converse to (ii) is false. Give an example of a smooth projective variety X and a nef line bundle L such that $L^{\otimes m}$ of L is never globally generated (equivalently, $\left|L^{\otimes m}\right|$ is never base point free) for any positive integer m.

