HWK #2, DUE WEDNESDAY 02/22

1. Hartshorne: Chapter II, 7.1.

2. Let $f(x) \in \mathbb{Z}[a_0, a_1, \ldots, a_m][x]$ and $g(x) \in \mathbb{Z}[b_0, b_1, \ldots, b_n][x]$ be two polynomials of degree m and n with coefficients a_0, a_1, \ldots, a_m and b_0, b_1, \ldots, b_n . Show that there is a polynomial

 $R(f,g) \in \mathbb{Z}[a_0, a_1, \dots, a_m, b_0, b_1, \dots, b_n],$

called the **resultant** of f and g, such that if $a_0, a_1, \ldots, a_m, b_0, b_1, \ldots, b_n$ belong to an algebraically closed field K then f and g have a common root if and only if R(f,g) = 0. (*Hint: Consider the polynomials* $x^i f$, $0 \le i \le n-1$ and $x^j g$, $0 \le j \le m-1$. Show that f and g have a common root if and only if these polynomials are dependent, when considered in the vector space of polynomials of degree m + n - 1).

3. Let K be a field and let V be a finite dimensional vector space over K.

(i) Show that the space of linear maps $\operatorname{Hom}_{K}(V, V)$ is naturally an irreducible affine variety over K (this is not meant to be hard).

(ii) Show the Cayley-Hamilton theorem, that every linear map $\phi: V \longrightarrow V$ satisfies its own characeristic polynomial equation $\det(\phi - xI) = 0$ (*Hint: it is enough to show that there is a dense open subset of matrices which satisfy their own characteristic polynomial.*)

4. Find the toric varieties corresponding to the following fans F:

(i) Let $F = \{\{0\}, \sigma_1, \sigma_2\}$ be the fan in $N_{\mathbb{R}} = \mathbb{R}^2$, where σ_1 is the cone spanned by e_1 and σ_2 is the cone spanned by e_2 .

(ii) Let F be the fan in $N_{\mathbb{R}} = \mathbb{R}^2$ given by taking all cones spanned by any subset of $\{e_1, e_2, -2e_1 - e_2\}$, excluding the cone spanned by all three (*Hint: try the quadric cone in* \mathbb{P}^3 .)

(iii) Let F be the fan given as the faces of the cone σ spanned by four vectors v_1 , v_2 , v_3 and v_4 in $N_{\mathbb{R}} = \mathbb{R}^3$, where the first three vectors span the lattice N and $v_1 + v_3 = v_2 + v_4$ (in other words, find the affine toric variety U_{σ}).

5. Let $\sigma \subset N_{\mathbb{R}} \simeq \mathbb{R}^n$ be a strongly convex rational polyhedral cone.

(i) If σ belongs to a linear subspace of codimension k then show that U_{σ} is isomorphic to $U_{\tau} \times \mathbb{G}_m^k$, where τ is the same cone as σ but now considered to be living in a subspace W of codimension k, which is spanned by elements of N.

(ii) Show that the following are equivalent:

(1) U_{σ} is regular,

- (2) σ is spanned by vectors v₁, v₂,..., v_k ∈ N which can be extended to vectors v₁, v₂,..., v_n ∈ N which generate the lattice N, and
 (3) U_σ ≃ A^k_K × G^{n-k}_m.