HWK \#2, DUE WEDNESDAY 02/22

1. Hartshorne: Chapter II, 7.1.
2. Let $f(x) \in \mathbb{Z}\left[a_{0}, a_{1}, \ldots, a_{m}\right][x]$ and $g(x) \in \mathbb{Z}\left[b_{0}, b_{1}, \ldots, b_{n}\right][x]$ be two polynomials of degree m and n with coefficients $a_{0}, a_{1}, \ldots, a_{m}$ and $b_{0}, b_{1}, \ldots, b_{n}$. Show that there is a polynomial

$$
R(f, g) \in \mathbb{Z}\left[a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{n}\right]
$$

called the resultant of f and g, such that if $a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{n}$ belong to an algebraically closed field K then f and g have a common root if and only if $R(f, g)=0$. (Hint: Consider the polynomials $x^{i} f$, $0 \leq i \leq n-1$ and $x^{j} g, 0 \leq j \leq m-1$. Show that f and g have a common root if and only if these polynomials are dependent, when considered in the vector space of polynomials of degree $m+n-1$).
3. Let K be a field and let V be a finite dimensional vector space over K.
(i) Show that the space of linear maps $\operatorname{Hom}_{K}(V, V)$ is naturally an irreducible affine variety over K (this is not meant to be hard).
(ii) Show the Cayley-Hamilton theorem, that every linear map $\phi: V \longrightarrow$ V satisfies its own characeristic polynomial equation $\operatorname{det}(\phi-x I)=0$ (Hint: it is enough to show that there is a dense open subset of matrices which satisfy their own characteristic polynomial.)
4. Find the toric varieties corresponding to the following fans F :
(i) Let $F=\left\{\{0\}, \sigma_{1}, \sigma_{2}\right\}$ be the fan in $N_{\mathbb{R}}=\mathbb{R}^{2}$, where σ_{1} is the cone spanned by e_{1} and σ_{2} is the cone spanned by e_{2}.
(ii) Let F be the fan in $N_{\mathbb{R}}=\mathbb{R}^{2}$ given by taking all cones spanned by any subset of $\left\{e_{1}, e_{2},-2 e_{1}-e_{2}\right\}$, excluding the cone spanned by all three (Hint: try the quadric cone in \mathbb{P}^{3}.)
(iii) Let F be the fan given as the faces of the cone σ spanned by four vectors v_{1}, v_{2}, v_{3} and v_{4} in $N_{\mathbb{R}}=\mathbb{R}^{3}$, where the first three vectors span the lattice N and $v_{1}+v_{3}=v_{2}+v_{4}$ (in other words, find the affine toric variety U_{σ}).
5. Let $\sigma \subset N_{\mathbb{R}} \simeq \mathbb{R}^{n}$ be a strongly convex rational polyhedral cone.
(i) If σ belongs to a linear subspace of codimension k then show that U_{σ} is isomorphic to $U_{\tau} \times \mathbb{G}_{m}^{k}$, where τ is the same cone as σ but now considered to be living in a subspace W of codimension k, which is spanned by elements of N.
(ii) Show that the following are equivalent:
(1) U_{σ} is regular,
(2) σ is spanned by vectors $v_{1}, v_{2}, \ldots, v_{k} \in N$ which can be extended to vectors $v_{1}, v_{2}, \ldots, v_{n} \in N$ which generate the lattice N, and
(3) $U_{\sigma} \simeq \mathbb{A}_{K}^{k} \times \mathbb{G}_{m}^{n-k}$.

