MODEL ANSWERS TO HWK #9

7.8 A section $\sigma: X \longrightarrow \mathbb{P}(\mathcal{E})$ is the same as a morphism of X to $\mathbb{P}(\mathcal{E})$ over X. But we already know that this is the same as the data of an invertible sheaf \mathcal{L} and a surjective morphism $\mathcal{E} \longrightarrow \mathcal{L}$.

7.9 (a) As stated this result is trivially false. Take X be the disjoint union of two points. So we assume that X is connected.

Let $P = \mathbb{P}(\mathcal{E})$. It is sufficient to prove that

$$\operatorname{Pic}(P) = \pi^* \operatorname{Pic}(X) \oplus \mathbb{Z} \langle \mathcal{O}_P(1) \rangle.$$

Note that if \mathcal{L} is any invertible sheaf on X then $\pi^*\mathcal{L}$ restricts to the trivial line bundle on any fibre. Since $\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$ is generated by $\mathcal{O}_{\mathbb{P}^n}(1)$, it follows that if $\pi^*\mathcal{L}(k) \simeq \mathcal{O}_P$, then k = 0. But

$$\pi_*\pi^*\mathcal{L}=\mathcal{L}\otimes\pi_*\mathcal{O}_P=\mathcal{L},$$

by push-pull, so that $\mathcal{L} \simeq \mathcal{O}_P$. Thus the RHS is a subgroup of the LHS.

To finish off, we need to prove that if we have an invertible sheaf \mathcal{M} on P which restricts to the trivial sheaf on one fibre then it is the pullback of a sheaf from X. Now if $P = X \times \mathbb{P}^n$ and X is regular and separated, then

$$Cl(P) \simeq Cl(X) \times \mathbb{Z}.$$

As X is regular and X is separated, Cartier divisors are the same as Weil divisors, and so

$$\operatorname{Pic}(P) = \pi^* \operatorname{Pic}(X) \times \mathbb{Z}.$$

Hence if \mathcal{M} is trivial over the point p then there is an open neighbourhood of p such that \mathcal{M} restricts to the trivial line bundle on every fibre. As X is connected, it follows that \mathcal{M} is trivial on every fibre. By what we just observed this implies that \mathcal{M} is locally the pullback of a line bundle. Let $\mathcal{L} = \pi_* \mathcal{M}$. Then \mathcal{L} is a line bundle, since we can check this locally. Consider the induced morphism of line bundles

$$\pi^*\mathcal{L} \longrightarrow \mathcal{M}$$
.

This morphism is surjective, since it is surjective locally and so it is an isomorphism.

(b) One direction is easy. If $\mathcal{E}' = \mathcal{E} \otimes \mathcal{L}$ then $\mathcal{S}' = \mathcal{S} \star \mathcal{L}$ and we have already seen that P and P' are isomorphic over X.

Now suppose that P and P' are isomorphic over X. As

$$\mathcal{O}_{P'}(1) \in \operatorname{Pic}(P') \simeq \operatorname{Pic}(P),$$

by what we have already proved

$$\mathcal{O}_{P'}(1) \simeq \pi^* \mathcal{L} \otimes \mathcal{O}_P(k),$$

for some line bundle on X and some integer k. Restricting to a fibre, it follows easily that k = 1. If we push this equation down to X we get

$$\mathcal{E}' \simeq \mathcal{E} \otimes \mathcal{L},$$

by push-pull.

7.10 (a) A **projective** n-space bundle over X is a morphism of schemes $\pi: P \longrightarrow X$ together with an open cover $\{U_i\}$ and isomorphisms $\psi_i \colon \pi^{-1}(U_i) \longrightarrow \mathbb{P}^n_{U_i}$ such that for every open affine $V = \operatorname{Spec} A \subset U_i \cap U_j$ the automorphism $\psi = \psi_j \circ \psi_i^{-1} \colon \mathbb{P}^n_V \longrightarrow \mathbb{P}^n_V$ is given by a **linear** automorphism θ of $A[x_0, x_1, \ldots, x_n]$, that is, $\theta(a) = a$ for every $a \in A$ and $\theta(x_i) = \sum a_{ij}x_j$ for suitable constants (a_{ij}) .

A **isomorphism** of two projective space bundles $(P, \pi, \{U_i\}, \{\psi_i\})$ and $(P', \pi', \{U_i'\}, \{\psi_i'\})$ is an isomorphism of P to P' over X, such that over any affine subset $V \subset U_i \cap U_j'$ the induced automorphism $\psi = \psi_i \cap \psi_j'^{-1}$ is given by a linear automorphism θ of $A[x_0, x_1, \ldots, x_n]$.

- (b) By assumption there is an open cover $\{U_i\}$ such that $\mathcal{E}|_{U_i}$ is free of rank n+1. In this case $\mathbb{P}(\mathcal{E}|_{U_i}) = \mathbb{P}^n_{U_i}$. By assumption, if $V \subset U_i \cap U_j$ then the induced linear map of affine bundles is linear.
- (c) As in the hint, pick an open subset U over which P is isomorphic to \mathbb{P}_U^n and let \mathcal{L}_0 be $\mathcal{O}_{\mathbb{P}_U^n}(1)$. Let $H_0 \subset \mathbb{P}_U^n$ be a hyperplane and let H be its closure in P. Then H has codimension one in P and so it defines a Weil divisor. As X is locally separated, and X is regular, in fact H defines a Cartier divisor. Let $\mathcal{L} = \mathcal{O}_P(H)$ be the associated invertible sheaf. Clearly $\mathcal{L}|_{\pi^{-1}(U)} = \mathcal{L}_0$. Arguing as in (7.9) (a) it follows that \mathcal{L} restricts to $\mathcal{O}(1)$ on every fibre. Let $\mathcal{E} = \pi_* \mathcal{L}$. Then \mathcal{E} is locally free of rank n+1. Indeed this can be checked locally, in which case P is a product and the result is clear. Let $P' = \mathbb{P}(\mathcal{E})$. Now there is a morphism

$$\pi^*\mathcal{E} \longrightarrow \mathcal{L},$$

which is surjective, as this can be checked locally. But then there is a morphism $P \longrightarrow P'$ over X. But then this map is an isomorphism, as it is an isomorphism locally over X.

- (d) Easy consequence of (7.9) (b), (b) and (c).
- 7.11 (a) By the universal property, it suffices to check this locally. So we may assume that $X = \operatorname{Spec} A$ is an affine scheme. Let $I = H^0(X, \mathcal{I})$.

Then $Y = \operatorname{Proj} S$, where

$$S = \bigoplus_{m=0}^{\infty} I^m.$$

and $Y' = \operatorname{Proj} S_{(d)}$. But we have already seen that Y and Y' are then isomorphic over X.

(b) One way to prove this is to observe that

$$S' = S \star J$$
.

Another is to observe that if $g: Z \longrightarrow X$ is any morphism then

$$g^{-1}(\mathcal{I}\cdot\mathcal{J})\cdot\mathcal{O}_Z=(g^{-1}\mathcal{I}\cdot\mathcal{O}_Z)\cdot(g^{-1}\mathcal{J}\cdot\mathcal{O}_Z).$$

Since

$$g^{-1}\mathcal{J}\cdot\mathcal{O}_Z,$$

is always an invertible sheaf, it follows that

$$g^{-1}(\mathcal{I}\cdot\mathcal{J})\cdot\mathcal{O}_Z,$$

is an invertible sheaf if and only if

$$g^{-1}\mathcal{I}\cdot\mathcal{O}_Z$$
,

is an invertible sheaf. But then the blow up of \mathcal{I} and the blow up of $\mathcal{I} \cdot \mathcal{J}$ satisfy the same universal property, so that they are isomorphic. (c) Pick a very ample divisor H on Z, whose support does not contain any fibre of f. Let $D = \pi(H)$. Then a priori D determines a Weil divisor but as X is regular it is a Cartier divisor. Then H is equal to the strict transform of D, so that $E = \pi^*D - H \geq 0$ and E is exceptional for f (that is, its image has codimension at least two). By assumption -E is relatively very ample. Let $\mathcal{I} = f_*\mathcal{O}_Z(-E)$. Then $\mathcal{I} \subset \mathcal{O}_X$ is a coherent \mathcal{O}_X -module, that is, a coherent ideal sheaf. As E is relatively very ample, the morphism of sheaves

$$f^*f_*\mathcal{O}_X(-E) \longrightarrow \mathcal{O}_Z(-E),$$

is surjective. It follows that

$$f^{-1}\mathcal{I}\cdot\mathcal{O}_Z\longrightarrow\mathcal{O}_Z(-E),$$

is surjective. As $f^{-1}\mathcal{I}\cdot\mathcal{O}_Z$ is a coherent ideal sheaf, it follows that $f^{-1}\mathcal{I}\cdot\mathcal{O}_Z=\mathcal{O}_Z(-E)$. In particular $f^{-1}\mathcal{I}\cdot\mathcal{O}_Z$ is an invertible sheaf. As

$$Z = \mathbf{Proj} \bigoplus_{m=0}^{\infty} \pi_* \mathcal{O}_Z(-mE) = \mathbf{Proj} \bigoplus_{m=0}^{\infty} \mathcal{I}^m,$$

it follows that Z is the blow up of \mathcal{I} . Let V be the image of E. Then the subscheme of X defined by \mathcal{I} is supported on V. On the other hand, V is contained in X - U as E is a divisor and V is not.

7.12. Presumably this question should be slightly reworded to say that no irreducible component of Y is contained in an irreducible component of Z and vice-versa.

This problem is local (see above), so we might as well assume that $X = \operatorname{Spec} A$ is affine. In this case Y and Z are defined by ideals I and J. Let K = I + J the ideal of the intersection. Then

$$Y = \operatorname{Proj} S = \bigoplus_{d=0}^{\infty} K^d,$$

is the blow up of $Y \cap Z$. We just need to check that the strict transforms \tilde{Y} and \tilde{Z} of Y and Z don't intersect on the exceptional divisor of the blow up. Pick generators a_1, a_2, \ldots, a_n for the ideal K. We may suppose that a_1, a_2, \ldots, a_m are generators of the ideal I and that the rest generate the ideal I. This defines a surjective ring homomorphism

$$\phi \colon A[x_1, x_2, \dots, x_n] \longrightarrow S,$$

of graded rings, just by sending x_i to a_i . The defines a closed embedding $Y \subset \mathbb{P}^n_A$. Note that the kernel of ϕ contains the polynomials $a_j x_i - a_i x_i$. Suppose we are given a point p of $Y - Y \cap Z$. Then we may find j > m such that a_i does not vanish at p. If $i \leq m$ then x_i must vanish in the fibre over p since a_i vanishes but a_j does not. Therefore x_1, x_2, \ldots, x_m vanish on \tilde{Y} , since this is the closure of the inverse image of $Y - Y \cap Z$ and by symmetry the rest of the variables vanish on \tilde{Z} . But then \tilde{Y} and \tilde{Z} don't intersect.

7.13. (a) Let U_0 and U_1 be the two standard open affine subsets of \mathbb{P}^1 . Define two morphisms,

$$C \times U_0 \longrightarrow C \times U_0$$
 and $C \times U_0 - \{[1:0]\} \longrightarrow C \times U_0$,

where the first morphism is the identity and the second morphism is given by $(P, u) \longrightarrow (\phi_u(P), u)$. These two morphisms glue to a morphism $\pi^{-1}(U_0) \longrightarrow C \times U_0$, which is easily seen to be an isomorphism. Hence $\pi^{-1}(U_i) \simeq C \times U_i$ and π is nothing more than projection onto the second factor. As properness is local on the base, π is certainly proper. As the composition of proper morphisms is proper, X is complete.

(b) Let $\pi: Y \longrightarrow Y$ be the normalisation of a variety Y. As since π is birational $\pi_*\mathcal{K}_{\tilde{Y}} = \mathcal{K}$. Thus there is a natural surjective morphism of sheaves

$$\mathcal{K}^* \longrightarrow \mathcal{K}^*/\pi_*\mathcal{O}_{\tilde{\mathcal{V}}}^*$$

As

$$\mathcal{O}_Y \subset \pi_* \mathcal{O}_{\tilde{Y}},$$

this induces a surjective morphism

$$\mathcal{K}^*/\mathcal{O}_V^* \longrightarrow \mathcal{K}^*/\pi_*\mathcal{O}_{\tilde{V}}^*$$
.

Hence there is a sequence

$$0 \longrightarrow \pi_* \mathcal{O}_{\tilde{Y}}^* / \mathcal{O}_Y^* \longrightarrow \mathcal{K}^* / \mathcal{O}_Y^* \longrightarrow \mathcal{K}^* / \pi_* \mathcal{O}_{\tilde{Y}}^* \longrightarrow 0,$$

which is clearly exact, as it is exact on stalks. If we take global sections, then we get an exact sequence

$$0 \longrightarrow H^0(Y, \pi_* \mathcal{O}_{\tilde{Y}}^* / \mathcal{O}_Y^*) \longrightarrow H^0(Y, \mathcal{K}^* / \mathcal{O}_Y^*) \longrightarrow H^0(Y, \mathcal{K}^* / \pi_* \mathcal{O}_{\tilde{Y}}^*).$$

For the third term we have

$$H^0(Y, \mathcal{K}^*/\pi_*\mathcal{O}_{\tilde{Y}}^*) = H^0(\tilde{Y}, \mathcal{K}^*/\mathcal{O}_{\tilde{Y}}^*).$$

So the second and third terms are nothing but the group of Cartier divisors on Y and Y. If we mod out by linear equivalence, that is, by the group

$$H^0(Y, \mathcal{K}^*),$$

then the second and third terms become the Picard groups of Y and Y. So there is an exact sequence

$$0 \longrightarrow H^0(Y, \pi_* \mathcal{O}_{\tilde{Y}}^* / \mathcal{O}_Y^*) \longrightarrow \operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}(\tilde{Y}).$$

We apply this in two situations, to $Y = C \times \mathbb{A}^1$ and $Y = C \times (\mathbb{A}^1 - \{0\})$. In both cases $\operatorname{Pic}(\tilde{Y}) = \mathbb{Z}$, since in the first case $\tilde{Y} = \mathbb{P}^1 \times \mathbb{A}^1$ and in the second case $\tilde{Y} = \mathbb{P}^1 \times (\mathbb{A}^1 - \{0\})$. Consider

$$H^0(Y, \pi_*\mathcal{O}_{\tilde{Y}}^*/\mathcal{O}_Y^*).$$

The sheaf

$$\pi_*\mathcal{O}_{\tilde{Y}}^*/\mathcal{O}_Y^*,$$

is supported on $p \times \mathbb{A}^1$, or $p \times (\mathbb{A}^1 - \{0\})$, as appropriate, where p is the node. As a sheaf on \mathbb{A}^1 it is isomorphic to $\mathcal{O}_{\mathbb{A}^1}^*$. As observed in the

$$H^0(\mathbb{A}^1, \mathcal{O}_{\mathbb{A}^1}^*) = \mathbb{G}_m$$
 and $H^0(\mathbb{A}^1 - \{0\}, \mathcal{O}_{\mathbb{A}^1}^*) = \mathbb{G}_m \times \mathbb{Z}$.

Thus

$$\operatorname{Pic}(C \times \mathbb{A}^1) = \mathbb{G}_m \times \mathbb{Z}$$
 and $\operatorname{Pic}(C \times (\mathbb{A}^1 - \{0\})) = \mathbb{G}_m \times \mathbb{Z}^2$.

(c) Projection $C \times \mathbb{A}^1 \longrightarrow C$ to the first factor defines a map on invertible sheaves by pullback, which induces an isomorphism

$$\operatorname{Pic}(C) \simeq \operatorname{Pic}(C \times \mathbb{A}^1).$$

Similarly pullback defines an injective map

$$\operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(C \times (\mathbb{A}^1 - \{0\})),$$

which sends $\langle t, n \rangle$ to $\langle t, 0, n \rangle$. Thus the natural restriction map

$$\operatorname{Pic}(C \times \mathbb{A}^1) \longrightarrow \operatorname{Pic}(C \times (\mathbb{A}^1 - \{0\})),$$

has the same form. Now let us consider the action of ϕ , on Pic(Y),

$$\phi^* \colon \operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}(Y).$$

It suffices to determine

$$\phi^*(t,0,0), \qquad \phi^*(0,1,0) \qquad \text{and} \qquad \phi(0,0,1).$$

As \mathbb{G}_m is a connected algebraic group and \mathbb{Z} is a discrete group, every group homomorphism

$$\mathbb{G}_m \longrightarrow \mathbb{Z}$$
,

is trivial. On the other hand, multiplication by $a \in \mathbb{G}_m$ induces the identity on Pic(C). It is not hard to see from this that

$$\phi^*(t,0,0) = \langle t,0,0 \rangle.$$

Now the isomorphism

$$H^{0}(Y, \pi_{*}\mathcal{O}_{\tilde{Y}}^{*}/\mathcal{O}_{Y}^{*}) \simeq H^{0}(\mathbb{A}^{1} - \{0\}, \mathcal{O}_{\mathbb{A}^{1}}^{*}),$$

sends $f \in \mathcal{O}_{\tilde{Y}}^*$ to the ratio of f at the two points $p_0 = [1:0]$ and $p_1 = [0:1]$ lying over p. The line bundle $\langle 0,1,0 \rangle$ corresponds to f which takes on the value u at p_0 and 1 at p_1 . The action of ϕ fixes f and from this it is clear that

$$\phi^*(0,1,0) = \langle 0,1,0 \rangle.$$

Finally consider the line bundle corresponding to $\langle 0, 0, 1 \rangle$. This corresponds to the line bundle $\mathcal{O}_{\mathbb{P}^1}(1)$ on \mathbb{P}^1 , pulled back to $\tilde{Y} = \mathbb{P}^1 \times (\mathbb{A}^1 - \{0\})$. The corresponding line bundle is given by x on $U_0 \times (\mathbb{A}^1 - \{0\})$ and 1 on $U_1 \times (\mathbb{A}^1 - \{0\})$. Applying ϕ we get ux on $U_0 \times (\mathbb{A}^1 - \{0\})$ and 1 on $U_1 \times (\mathbb{A}^1 - \{0\})$. The line bundle with these transition functions is $\langle 0, 1, 1 \rangle$. Putting all of this together, we see that

$$\phi^*(t,d,n) = \langle t,d+n,n \rangle.$$

(d) Let \mathcal{L} be an invertible sheaf on X. If we restrict \mathcal{L} to $C \times U_0$ then we get an element $\langle t, n \rangle$ of $\operatorname{Pic}(C \times U_0)$ and if we restrict to $C \times U_1$ then we get another element $\langle s, m \rangle$ of $\operatorname{Pic}(C \times U_1)$. Their images in $\operatorname{Pic}(C \times (U_0 \cap U_1))$ are $\langle t, 0, n \rangle$ and $\langle s, m, m \rangle$. Since these are supposed to agree, we must have s = t and m = n = 0. But then the restriction of \mathcal{L} to $C \times \{0\}$ has degree zero, so \mathcal{L} cannot be ample. In particular X is not projective over k and π is not projective.