MODEL ANSWERS TO HWK \#7

1. (i) Call a line standard if it is either horizontal or vertical.

It is expedient to prove an even stronger result. We prove that if $f: U \longrightarrow \mathbb{C}$ is any function, where U is the complement of finitely many standard lines, which restricts to a polynomial on any standard line contained in U, then f is a polynomial. We will be somewhat sloppy and say that a standard line is contained in U if it is not one of the deleted lines (strictly speaking, only the line minus finitely many points lies in U).
Note that if $V \subset U$ is obtained from U by deleting finitely many more standard lines and $\left.f\right|_{V}$ is a polynomial, then f is a polynomial. Indeed $\left.f\right|_{V}$ extends to a polynomial function $g: U \longrightarrow \mathbb{C}$. If l is a standard line in V then $\left.f\right|_{l}$ and $\left.g\right|_{l}$ agree on an open subset of the line and so are equal. But then $f=g$.
Let d be the smallest positive integer such that there are uncountably many real numbers r such that the restriction of f to the vertical line $x=r$ is a polynomial of degree at most d and there are uncountably many real numbers s such that the restriction of f to the horizontal line $y=s$ is a polynomial of degree at most d.
We proceed by induction on d. Suppose that $d<0$, so that $f(x, y)$ restricts to the zero function on infinitely many horizontal and infinitely many vertical lines. If l is any standard line contained in U then the restriction of f to l is a polynomial with infinitely many zeroes, so that f must be the zero function, which is represented by the zero polynomial.
Suppose that $d \geq 0$. Note that the change of coordinates $x \longrightarrow x-a$ does not change the property that U is the complement of finitely many standard lines, that f restricted to any standard line is a polynomial and it also does not change the value of d. So we might as well assume that the x-axis is contained in U and $f(x, 0)$ is a polynomial of degree at most d. Let $g(x, y)=f(x, y)-f(x, 0)$. Then the restriction of $g(x, y)$ to every vertical line is a polynomial in y which vanishes at the origin. Let $V \subset U$ be the set obtained by deleting the line $y=0$. Let

$$
h: V \longrightarrow \mathbb{C},
$$

be the function $h(x, y)=g(x, y) / y$. Then V is obtained from \mathbb{C}^{2} by deleting finitely many standard lines, $h(x, y)$ is a function which when restricted to any standard line in V is a polynomial, which has degree
at most $d-1$ on uncountably many standard lines. By induction $h(x, y)$ is a polynomial function. It follows that $f(x, y)=y h(x, y)+f(x, 0)$ is a polynomial function on V, whence on U. Thus $P(\mathbb{C})$ is true.
(ii) Enumerate, c_{1}, c_{2}, \ldots the points of $\overline{\mathbb{Q}}$ and let $h_{n}(y)$ (respectively $\left.v_{n}(x)\right)$ be the monic polynomial which vanishes on the first n horizontal (respectively vertical) lines. Let

$$
f(x, y)=\sum_{i=0}^{\infty} h_{i}(y) v_{i}(x)
$$

It is clear that $f(x, y)$ is not a polynomial. But suppose we pick a horizontal line, given by $y=b$. Then $b=c_{n}$ for some n and so

$$
f(x, b)=\sum_{i \leq n} h_{i}(b) v_{i}(x),
$$

so that $f(x, b)$ is a polynomial (and $f(x, y)$ defines a function). By symmetry the restriction of $f(x, y)$ to any vertical line is a polynomial. So $P(\overline{\mathbb{Q}})$ fails.
(iii) Clear, from (i) and (ii) and the Lefschetz principle.
2. (i) Let $\phi \in V, \psi \in V$ and let $\lambda \in k$. Then

$$
\phi: z \longrightarrow X
$$

is a morphism of schemes over k, such that the unique point of z goes to x. But then ϕ corresponds to a morphism of local rings over k,

$$
f: \mathcal{O}_{X, x} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} .
$$

Similarly suppose that ψ corresponds to g. Note that the function

$$
m_{\lambda}: \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \quad \text { given by } \quad a+b \epsilon \longrightarrow a+\lambda b \epsilon,
$$

is a morphism of local rings, which is an isomorphism if and only if $\lambda \neq 0$. Let $\lambda \phi$ be the morphism of schemes corresponding to the morphism of local rings $m_{\lambda} \circ f$. Similarly, define a map

$$
\alpha: \frac{k\left[\epsilon_{1}\right]}{\left\langle\epsilon_{1}^{2}\right\rangle} \otimes_{k} \frac{k\left[\epsilon_{2}\right]}{\left\langle\epsilon_{2}^{2}\right\rangle} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle},
$$

by sending both ϵ_{1} and ϵ_{2} to ϵ and extend by linearity to get a morphism of local rings. Composing with the natural map

$$
(f, g): \mathcal{O}_{X, x} \longrightarrow \frac{k\left[\epsilon_{1}\right]}{\left\langle\epsilon_{1}^{2}\right\rangle} \underset{k}{\otimes} \frac{k\left[\epsilon_{2}\right]}{\left\langle\epsilon_{2}^{2}\right\rangle},
$$

we get a morphism of local rings and this defines a morphism

$$
\phi+\psi: \underset{2}{z} \underset{ }{z} \longrightarrow X
$$

This defines an operation of scalar multiplication and addition of vectors, which clearly satisfy the axioms for a vector space.
(ii) If $\phi \in T_{x} X$ and

$$
f: \mathcal{O}_{X, x} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle},
$$

is the corresponding morphism of local rings, then the kernel of f contains \mathfrak{m}^{2}. On the other hand, the inverse image of $\langle\epsilon\rangle$ is by definition contained in \mathfrak{m}. It follows that we get a linear map of vector spaces

$$
\frac{\mathfrak{m}}{\mathfrak{m}^{2}} \longrightarrow k\langle\epsilon\rangle \simeq k,
$$

that is, an element of the dual space

$$
\left(\frac{\mathfrak{m}}{\mathfrak{m}^{2}}\right)^{*}
$$

and it is not hard to see that this assignment induces a bijection.

