MODEL ANSWERS TO HWK #6

1. We may assume that Y is projective. Let W C Y x B be the closure
of the image of X under the morphism f x w. Then we may factor 7
into two morphisms,

X "ow

B7
where p is restriction of the second projection. Note that the second
morphism is automatically projective and the first morphism is pro-
jective as the composition is projective and the second morphism is
separated.
By assumption h(m~*(bg)) is a point wg in W. But wy is then the fibre
of p over by. By upper semi-continuity of the dimensions of a fibre, it
follows that there is an open subset U of B, such that p~'(b) is zero
dimensional, for every b € U. In this case, the dimension of the fibres
of h over p~1(U) is at least n, whence the dimension of any fibre of h
is at least n.
Pick w € W. Then the fibre h~!(w) has dimension at least n. On
the other hand, h™'(w) C 7~ !(p(w)), which has dimension n, so that
h~!(w) is a union of some of the irreducible components of 7= (p(w)).
It follows that h(m~!(p(w))) = p~!(p(w)) is a finite set of points. As
7 (p(w)) is connected, it follows that the image is a point.
2. Let m: Ax A — A be projection onto the first factor and let
f: Ax A — A be the morphism which sends (g, h) to ghg™. Then
71(e) = {e} x A is sent to a point by f. As the fibres of 7 are
irreducible of the same dimension and 7 is surjective, it follows that if
a € Athen f sends {a} x A to a point. As f sends (a,e) to e it follows
that aba™! = e, so that A is commutative.
3. It suffices to prove that if 7 sends the identity to the identity then
7 is a group homomomorphism. Consider the morphism of projective
varieties

f: AxA— B,

which sends (a1, az) to m(ay +a2) —m(ay) —m(az). Let p: Ax A — A

denote projection onto the first factor. Then f sends ¢~!(e) to the

identity of B, where e is the identity of A. By the rigidity lemma f

sends {a} x A to a point. But f(a,e) is the identity so f(aq,az) is
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the identity of B, for every a; and ay € A. But then 7 is a group
homomomorphism.

4. We may suppose that 7 sends zero to zero and we need to prove
that 7 is a group homomorphism in this case. Since GJ}, is a product in
the category of varieties and algebraic groups, it suffices to prove this
result when H = G,,. We are given a ring homomorphism

K[Z] — K[zZ"],

which sends the maximal ideal of the origin to the maximal ideal of
the origin. So we are given a semigroup homomorphism

7 — 7",

which sends 0 to 0. This map is determined by the image of 1. But the
group homomorphism which sends x; to t* sends 1 to (ay,as,...,a,).
This exhausts all possibilities for where to send 1, whence the result.
5. We first show that f is a morphism. One can use the valuative
criteria but it is more straightforward to prove this result directly. It
suffices to prove that if we are given a rational map

fi Al — P,

then f is defined at the origin. Using the local description of mor-
phisms, we have

t—[fo: fre-: fal,

where f; = g¢;/h; is a rational function. Let m; = v(f;), where v
measures the multiplicity of f; at the origin. Let m = minm,;. Then f
is equally well represented by

t—[fo: Sl f
where f!/ = t™f;. By our choice of m, f! does not have a pole at 0 and
at least one f! is non-zero at 0. Thus f is a morphism.
We may assume that f(0) is the identity of A. As P! — {0} ~ G, it
follows that f(a + b) = f(a) + f(b), for all a and b € P! — {c0}. As
P! — {0, 00} ~ G,, it follows that f = 7,0 g, where g(1) is the identity.
In this case g(ab) = g(a) + ¢g(b) and so

flab) —p = g(ab) = g(a) + g(b) = f(a) + f(b) — 2p,
that is
flab) +p = f(a) + f(b) = fla+D).
This is clearly absurd, unless f(a) is the identity of A, for every a € PL.
Now suppose that the groundfield is C. Then A is a complex torus,

the quotient of C™ by a lattice A of rank 2n and P! is the Riemann

sphere. The universal cover of A is C* and the universal cover of P! is
2



the Riemann sphere. By the universal property of the universal cover,
there is an induced commutative diagram

pt . C"

|,

Pt A
If g is not constant then one of the induced holomorphic maps
P! — C,

given by projection, is not constant. By the open mapping theorem
the image is open; as P! is compact the image is compact, whence
closed. The only open and closed subset of C is C itself, but this is not
compact, a contradiction. Hence g is constant and so f is constant as
well.

6 (i) Consider the morphism X x Y — G(1,n). As X and Y live
in complementary linear spaces this map is injective. So the image
J(X,Y) has dimension d + e. The universal family J(X,Y) over this
has dimension d + e + 1 and the natural morphism to P" is injective,
so the image J(X,Y') has dimension d + e + 1.

(ii) Pick A; and Ay copies of P" embedded as complementary linear
subspaces of P21, This induces X and Y embeddings of X and Y in
P>+ in complementary linear spaces. By (a),

dim J(X,Y)=d+e+ 1.

Now pick a projection my: P?»*! ——s» P" from a linear space A of
dimension n, so that A; get mapped isomorphically down to P". For
example if A; is the zero locus of Z,,,1, Zp19,..., Zopr1 and Ay is the
zero locus of Zy, Zy,...,Z, then project from the linear space Z; =
Zn+1+i, 0 < i < n. Consider a line [ = (z,y), where z € Xandyev.
Then [ does not intersect A, since z # y are points of P"  so that
J(X,Y) does not intersect A.

Suppose that z € P" is a point and suppose that the fibre over z is
not zero dimensional, so that (A, z) intersects J(X,Y') in dimension at
least one. As A is a hyperplane in (A, z), it follows that A intersects
J(X,Y), a contradiction.

But then projection down to P is morphism, with zero dimensional
fibres, and so

dim J(X,Y) = dim J(X,Y) =d + e+ 1.

(iii) If d + e > n then d 4+ e+ 1 > n. By (ii) it follows that X and Y
intersect.



