MODEL ANSWERS TO HWK \#5

6.1. It is clear that $X \times \mathbb{P}_{k}^{n}$ is Noetherian and integral. The morphism $X \times \mathbb{P}_{k}^{n} \longrightarrow X$ is projective, whence separated. As the composition of separated morphisms is separated, $X \times \mathbb{P}_{k}^{n}$ is separated.
Suppose that $\eta \in X \times \mathbb{P}_{k}^{n}$ is a codimension one point, so that the closure of η is a prime divisor Y in $X \times \mathbb{P}_{k}^{n}$. We want to show that Y is defined by a single equation locally about η. So we may assume that X is affine and we are free to replace \mathbb{P}_{k}^{n} by \mathbb{A}_{k}^{n}. We are reduced to the case $n=1$ by induction on n.
If Y does not dominate X then Y is locally over the image of the form $W \times \mathbb{A}^{1}$, where W is a divisor in X. If $g \in A=A(X)$ defines W locally about the generic point of W then $g \in A[t]=A\left(X \times \mathbb{A}_{k}^{1}\right)$ also defines Y about the generic point η of Y.
Let ξ be the generic point of X, with residue field K. Then $Y^{\prime}=$ $Y \cap \mathbb{A}_{K}^{1}=\{\eta\}$ and we may easily find $f(x) \in K[x]$ which cuts out η. Let $U=X \times \mathbb{A}_{k}^{n}$ be the open subset of $X \times \mathbb{P}_{k}^{n}$, given by one of the standard open affines $\mathbb{A}_{k}^{n} \subset \mathbb{P}_{k}^{n}$. Then $X \times \mathbb{P}^{n-1}$ is a prime divisor and so there is an exact sequence

$$
\mathbb{Z} \longrightarrow \mathrm{Cl}\left(X \times \mathbb{P}_{k}^{n}\right) \longrightarrow \mathrm{Cl}\left(X \times \mathbb{A}_{k}^{n}\right) \longrightarrow 0
$$

We first check that

$$
\mathrm{Cl}\left(X \times \mathbb{A}_{k}^{n}\right)=\mathrm{Cl}(X)
$$

By induction on n we may assume that $n=1$ and we may apply (II.6.6). Finally we check that we have injectivity on the left. This is clear if we restrict to $\{\eta\} \times \mathbb{P}^{n}$, since then Z is sent to the class of a hyperplane.
6.4. Let K be the field of fractions of A. Then

$$
K=\frac{k\left(x_{1}, x_{2}, \ldots, x_{n}\right)[z]}{\left\langle z^{2}-f\right\rangle} .
$$

This is a quadratic extension of the field $L=k\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. As the characteristic is not $2, K$ is the splitting field of $z^{2}-f$ so that K / L is Galois, with Galois group $\mathbb{Z} / 2 \mathbb{Z}$ given by the involution $z \longrightarrow-z$.
Every element α of K is uniquely of the form $g+h z$, where g and $h \in k\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then the conjugate β of α is $g-h z$ so that
$(X-\alpha)(X-\beta)=X^{2}-(\alpha+\beta) X+(\alpha \beta)=X^{2}-2 g X+\left(g^{2}-h^{2} f\right)$, is the minimal polynomial of $\alpha . \alpha$ is in the integral closure of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ inside K if and only if $2 g$ and $g^{2}-h^{2} f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. But
$2 g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ if and only if $g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. In this case $g^{2}-h^{2} f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ if and only if $h^{2} f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. As f is square free and $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a UFD this happens if and only if $h \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. But then A is the integral closure of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
In particular A is integrally closed.
6.5. (a) Note that if $r \geq 2$ then $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+\ldots x_{r}^{2}$ is irreducible, as the characteristic is not two. In particular it is square free and we may apply (6.4).
(b) As k is algebraically closed there is an element i such that $i^{2}+1=0$. Consider the change of variables which replaces x_{0} by $i x_{0}$ and fixes the other variables. This has the effect of replacing

$$
x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+\ldots x_{r}^{2} \quad \text { by } \quad-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+\cdots+x_{r}^{2} .
$$

Now consider the change of variables which sends

$$
2 x_{0} \longrightarrow x_{0}+x_{1} \quad \text { and } \quad 2 x_{1} \longrightarrow x_{0}-x_{1}
$$

and fixes the other variables. As

$$
x_{1}^{2}-x_{0}^{2}=\left(x_{0}+x_{1}\right)\left(x_{1}-x_{0}\right),
$$

this has the effect of replacing

$$
-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+\cdots+x_{r}^{2} \quad \text { by } \quad x_{0} x_{1}+x_{2}^{2}+\cdots+x_{r}^{2}
$$

Finally multiplying x_{0} by -1 we can put the equation for X into the form

$$
x_{0} x_{1}=x_{2}^{2}+\cdots+x_{r}^{2}
$$

(1) X is toric as it is defined by the binomial equation

$$
x_{0} x_{1}=x_{2}^{2}
$$

If $n=r=2$, then we have already proved that $\operatorname{Cl}(X)=\mathbb{Z}_{2}$. There are two ways to prove the general case. The first is directly, which basically repeats the same computation. On the other hand, note first that $X=Y \times \mathbb{G}_{m}^{n-r}$. Now

$$
Y \times \mathbb{G}_{m}^{n-r} \subset Y \times \mathbb{A}_{k}^{n}
$$

is an open subset. It follows that there is a surjection

$$
\mathrm{Cl}\left(Y \times \mathbb{A}_{k}^{n}\right) \longrightarrow \mathrm{Cl}(X)
$$

But we have already seen that

$$
\mathrm{Cl}(Y)=\mathrm{Cl}\left(Y \times \mathbb{A}_{k}^{n}\right),
$$

and this easily implies that

$$
\mathrm{Cl}(X) \underset{2}{=} \mathrm{Cl}(Y) .
$$

(2) Note that we can put X into the form

$$
x_{0} x_{1}=x_{2} x_{3} .
$$

As this is a binomial equation it follows that X is again toric. As in (1) we are reduced to the case $n=r+1=3$.

Pick four vectors v_{0}, v_{1}, v_{2} and v_{3} any three of which span the standard lattice in $N_{\mathbb{R}}=\mathbb{R}^{3}$ such that

$$
v_{0}+v_{2}=v_{1}+v_{3},
$$

and let σ be the cone spanned by these vectors. We compute the dual cone $\check{\sigma}$. σ has four faces and so there are four vectors w_{0}, w_{1}, w_{2} and w_{3} which span $\check{\sigma}$. It is easy to check that

$$
\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j} .
$$

It follows easily from this that any three of the four vectors w_{0}, w_{1}, w_{2} and w_{3} span $M_{\mathbb{R}}=\mathbb{R}^{3}$ and that

$$
w_{0}+w_{2}=w_{1}+w_{3} .
$$

Note that the equation for the associated affine toric variety is

$$
x_{0} x_{2}=x_{1} x_{3},
$$

which is obtained from the original equation by a simple permutation of the variables. There are four invariant divisors D_{0}, D_{1}, D_{2} and D_{3}, corresponding to the four vectors v_{0}, v_{1}, v_{2} and v_{3}, which are primitive generators of the rays they span. Dotting with $f_{1}=w_{0}, f_{2}=w_{1}$ and $f_{3}=w_{3} \in M$ gives three relations

$$
D_{0}=D_{4}, \quad D_{1}=D_{4} \quad \text { and } \quad D_{3}=D_{4}
$$

So

$$
\mathrm{Cl}(X)=\mathbb{Z}
$$

(3) Note that the hyperplane $X_{1}=0$ intersects X in the closed set Z defined by $x_{2}^{2}+x_{3}^{2}+\cdots+x_{r}^{2}$, which is irreducible. Let U be the complement. Consider projection down to \mathbb{P}_{k}^{n-1}, from the point [1:0: $0: \cdots: 0]$. Let $V \simeq \mathbb{A}_{k}^{n-1} \subset \mathbb{P}_{k}^{n-1}$ be the standard open subset where $X_{1} \neq 0$. Given $\left[a_{1}: a_{2}: \cdots: a_{n}\right] \in V$, note that there is a unique point

$$
a_{0}=\frac{-1}{a_{1}}\left(a_{2}^{2}+a_{3}^{2}+\ldots a_{n}^{2}\right),
$$

such that $\left[a_{0}: a_{1}: \cdots: a_{n}\right] \in U$ projects down to V. It follows easily that $V \simeq U=\mathbb{A}_{k}^{n-1}$. In particular $\mathrm{Cl}(U)=0$. On the other hand Z is linearly equivalent to zero so that $\mathrm{Cl}(X)=0$ using the usual exact sequence.
(c) All of this follows from (II.6.3.b), except the first isomorphism (there are two abelian groups which are extensions of \mathbb{Z}_{2} by $\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{2}$ and \mathbb{Z}).
In fact cases (1) and (2) are toric varieties, so we reduce to the case when $n=r$. In case (1), we have $X_{0} X_{1}=X_{2}^{2}$ in \mathbb{P}^{2}, which is a copy of \mathbb{P}^{1}. So the class group is \mathbb{Z}. It is clear that a line in \mathbb{P}^{2} cuts out two points, that is, twice a generator.
(2) is the toric variety $\mathbb{P}^{1} \times \mathbb{P}^{1}$. There are a million ways to check that the Class group is \mathbb{Z}^{2}.
(d) We already know that the homogeneous coordinate ring of Q is integrally closed and that the class group of the corresponding affine variety is zero. It follows that the homogeneous coordinate ring of Q is a UFD by (II.6.2).
$Y \sim d H$, for some positive integer d, as H generates $\mathrm{Cl}(Q)$. It follows that there is a rational function $f \in K(Q)$ such that $(f)=Y-d H$. Suppose that H is defined by the linear polynomial X_{0}. The restriction of f to the open affine $Q_{0}=Q \cap U_{0}$ is a rational function with no poles. It follows that $Y \cap Q_{0}$ is a prime divisor which is linearly equivalent to zero. As $\mathrm{Cl}\left(Q_{0}\right)=0$, the ideal of $Y_{0}=Y \cap Q_{0}$ is principal. Thus there a polynomial g which defines Y_{0}. If we homogenize g then we get a homogeneous polynomial G which defines Y.
6.6. (a) We are given two group laws on C, one given by the rule,

$$
(P, Q) \longrightarrow R,
$$

where $\left(P-P_{0}\right)+\left(Q-P_{0}\right) \sim R-P_{0}$ and the other given by the rule

$$
(P, Q) \longrightarrow R
$$

where P, Q and $-R$ are collinear. Suppose that P, Q and R are collinear. Then there a linear polynomial L such that $(L)_{0}=P+Q+R$. On the other hand, the line $X=Z$ is a flex line to the cubic at P_{0} so that $(X-Z)=3 P_{0}$. But then

$$
\left(P-P_{0}\right)+\left(Q-P_{0}\right)+\left(R-P_{0}\right)=(L /(X-Z)) \sim 0 .
$$

But then it is clear that the two group laws are equivalent.
Or, to crack a nut using a sledgehammer, we could appeal to the fact that as C is projective, the two group laws makes C into two abelian varieties. The identity morphism of C clearly fixes the identity, and so it must be a group isomorphism, by rigidity (see the next hwk).
(b) By (a) $2 P$ is equivalent to zero in the group law on X if and only if there is a line defined by a linear polynomial L such that $(L)_{0}=2 P+P_{0}$. But the only line which intersects C in a point with multiplicity two is the tangent line.
(c) By (a) $3 P$ is equivalent to zero in the group law on X if and only if there is a line defined by a linear polynomial such that $(L)_{0}=3 P$. By (b) this line is the tangent line and by definition P is then an inflection point.
(d) It suffices to show that if P, Q and R are collinear and P and Q have their coordinates in \mathbb{Q} then so does R. Suppose L is the line such that

$$
L \cap C=P+Q+R
$$

Then L is the line spanned by P and Q. It follows that L is defined by an equation

$$
a X+b Y+c Z=0
$$

where a, b and $c \in \mathbb{Q}$. Applying a rational change of coordinates, we may assume that L is the line $Z=0$. This won't change the set of points with rational coordinates and the equation of C becomes a cubic $F \in \mathbb{Q}[X, Y, Z]$ with rational coefficients. Restricting to L we get a cubic $G(X, Y)=F(X, Y, 0) \in \mathbb{Q}[X, Y]$ with rational coefficients and two rational roots. It follows that the third root is rational, so that R has rational coordinates.
In retrospect the most sensible answer to this question is "No, I cannot determine the rational points." But let us suppose we are not sensible. If we dehomogenize we get the equation

$$
y^{2}=x^{3}-x=x(x-1)(x+1)
$$

If $y=0$ then we get three points, $P=[0: 0: 1], Q=[1: 0: 1]$, $R=[-1: 0: 1]$. The line through the point P and P_{0} is the line $X=0$. The cubic equation reduces to

$$
Y^{2} Z=0
$$

This has a double root at $Y=0$ so that this line is tangent to the cubic at P and P is torsion, $2 P=0$. Similarly the line through Q and P_{0} is the line $X=Z$. The cubic equations reduces to

$$
Y^{2} X=X^{3}-X^{3}=0 .
$$

This has a double root at $Y=0$, so that the line $X=Z$ is tangent to Q and $2 Q=0$. As P, Q and R are collinear it follows that $P+Q+R=0$ so that $2 R=0$. The group generated by P, Q and R is $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
Suppose that $[a: b: c]$ is a point with rational coordinates. We may assume that a, b and c are coprime integers. If one of a, b or c is zero, then we have one of the four points P_{0}, P, Q or R.
So we assume that $a b c \neq 0$. We have

$$
b^{2} c=a(a-c)(a+c)
$$

We will show that there is no such triple (a, b, c). Suppose that p is a prime factor of both b and c. Then p divides $a(a-c)(a+c)$ and so p divides a, which contradicts the fact that a, b and c are coprime. It follows that b and c are coprime.
Suppose we rewrite the equation above as

$$
c\left(b^{2}+a c\right)=a^{3} .
$$

As c and b are coprime, c and $b^{2}+a c$ are coprime. It follows that c is a cube.
Consider the two points on the cubic, $[a: b: c]$ and $[0: 0: 1]$. The line through these points is $b x=a y$ and this intersects the cubic in one more point. Solving we get

$$
b^{2} x^{2}=a^{2} y^{2}=a^{2}\left(x^{3}-x\right)
$$

So

$$
x^{2}-\frac{b^{2}}{a^{2}} x-1=0
$$

It follows that the other root is $x=-c / a$ and $y=-c / b^{2}$. So

$$
\left[-b c:-a c: a b^{2}\right]
$$

is a point of the cubic, with integer coordinates. By what we have already proved, it follows that a divides $b c$ and in fact

$$
\left[-b c / a:-c: b^{2}\right],
$$

is a point of the cubic, with integer entries.
By what we have already proved, c is a cube. It follows that the second entry is always a cube (since the second entry is always equal to the third entry of some other rational point). But then the third entry is always a sixth power (it is the square of b, which is a cube). Continuing in this way, we see that b and c are arbitrary large powers of integers. It follows that b and c are both ± 1. But then

$$
a(a-1)(a+1)= \pm 1
$$

It follows that $a= \pm 1$. But then either $a+c=0$ or $a-c=0$, and so $b^{2} c=0$, a contradiction.
So the only rational points of the cubic have one entry zero and the group of rational points is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

