MODEL ANSWERS TO HWK \#2

1. Suppose that X is contained in a coordinate hyperplane. If this coordinate hyperplane is defined by the equation $X_{i}=0$ then X is defined by the monomial X_{i} and polynomials which don't involve X_{i}. Replacing \mathbb{P}^{n} by this coordinate hyperplane and applying induction we may therefore assume that X intersects the torus $G=\mathbb{G}_{m}^{n} \subset \mathbb{P}^{n}$. Acting by an element of G won't change whether or not X is defined by binomials, nor whether X is a toric variety. So we may as well assume that the identity $e=[1: 1: 1: \cdots: 1]$ of G is contained in X.
By assumption we may find a dense open subset $H=\mathbb{G}_{m}^{k} \subset X$ isomorphic to a torus where $H \subset G$. Let Z be the closure of X. Then H is a dense open subset of Z and the action of H extends to Z. Now G acts on $K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ and H acts on $K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ by restriction. $K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ decomposes as a direct sum of eigenspaces and these eigenspaces are direct sums of eigenspaces for the action of G, that is, the eigenspaces of the action of H have a basis of monomials. Let I be the ideal of Z. Then I is invariant under the action of H and so I is generated by eigenpolynomials F.
Suppose that we pick two monomials M_{1} and M_{2} of the same degree with the same eigenvalue. Now $B=M_{1}-M_{2}$ vanishes at e. Therefore it vanishes on the orbit of e, that is, on a dense subset of Z. Therefore B vanishes on Z. But then it is clear that every eigenpolynomial $F \in I$ is a sum of binomials $B \in I$. It follows that Z is defined by finitely many binomials $F_{1}, F_{2}, \ldots, F_{p}$.
Note that H is the complement of the coordinate hyperplanes. Let H_{i} be a coordinate hyperplane. The stabiliser of H_{i} in G is a torus G_{i} of dimension $n-1$ which sits naturally inside H_{i}. The intersection of G_{i} with H is a torus H_{i} of codimension one in H. By induction on the dimension, it follows that the orbits of H acting on Z are the intersections of Z with the orbits of G, that is, with the coordinate linear subspaces. Thus $X \subset Z$ is given by the non-vanishing of some mononomials $G_{1}, G_{2}, \ldots, G_{q}$.
The last equivalence follows easily from what we have already proved. 2. Let U be the free abelian monoid generated by $v_{1}, v_{2}, \ldots, v_{m}$ (so that U is abstractly isomorphic to \mathbb{N}^{m}). Define a monoid homomorphism $U \longrightarrow S_{\sigma}$ by sending v_{i} to u_{i}. This is surjective and the kernel is
generated by relations of the form

$$
\sum a_{i} v_{i}-\sum b_{i} v_{i}
$$

where

$$
\sum a_{i} u_{i}=\sum b_{i} u_{i}
$$

The group algebra A_{σ} is generated by $x_{i}=\chi^{u_{i}}$. Define a ring homomorphism

$$
K\left[x_{1}, x_{2}, \ldots, x_{n}\right] \longrightarrow A_{\sigma}
$$

by sending x_{i} to $\chi^{u_{i}}$. Then the kernel is generated by equations of the form

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{m}^{a_{m}}=x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{m}^{b_{m}}
$$

where

$$
\sum a_{i} u_{i}=\sum b_{i} u_{i}
$$

since if we quotient out by these relations then we get the vector space spanned by the monomials $\chi^{u}, u \in S_{\sigma}$.
3. Let Z be the closure of X. Then Z is an irreducible projective variety defined by the vanishing of binomials. We first prove the stronger statement that Z is a non-normal toric variety. As Z is defined by binomials, Hilbert's basis theorem implies that Z is defined by finitely many binomials. If Z is contained in a coordinate hyperplane H then we might as well replace \mathbb{P}^{n} by this coordinate hyperplane. So we may assume that Z intersects the torus $G=\mathbb{G}_{m}^{n} \subset \mathbb{P}^{n}$. If we act by G this won't change binomial equations, so that we might as well suppose that Z contains the identity $e=[1: 1: 1: \cdots: 1]$ so that the equations defining Z take the form monomial equals monomial.
Let $W \subset \mathbb{A}_{K}^{n+1}$ be the affine variety defined by the same polynomials as Z. Suppose that W is defined by monomial equations of the form

$$
x_{0}^{a_{1}} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}=x_{0}^{b_{0}} x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}
$$

Let U be the free monoid with generators $v_{0}, v_{1}, \ldots, v_{n}$ and let S be the quotient monoid by the relations

$$
\sum a_{i} v_{i}-\sum b_{i} v_{i}
$$

Then the coordinate ring of W is isomorphic to $K[S]$. Embed $U \subset \mathbb{R}^{n}$. Then the vectors $\sum a_{i} v_{i}-\sum b_{i} v_{i}$ define a subspace U_{0}. If we project U onto $U / U_{0}=\mathbb{R}^{m}$ this defines an embedding $S \subset M \simeq \mathbb{Z}^{m}$. Let $\tau \subset M_{\mathbb{R}}$ be the cone spanned by the images $u_{0}, u_{1}, \ldots, u_{n}$ of $v_{0}, v_{1}, \ldots, v_{n}$. Then τ is a rational polyhedral cone. Let $\sigma=\check{\tau}$ be the dual cone. We may assume that τ spans $M_{\mathbb{R}}$ so that σ is strongly convex. Then $\tau=\check{\sigma}$ and we have already seen that $S \subset S_{\sigma}$ is a non-normal affine toric variety defined by the same equations as W. In other words W is a non-normal
affine toric variety. But then the action of \mathbb{G}_{m}^{m} descends to an action on Z, so that Z is a non-normal toric projective variety and the natural inclusion morphism $Z \longrightarrow \mathbb{P}^{n}$ is a toric morphism.
As in the proof of (1) it follows that the action of the torus $H \subset Z$ on Z has only finitely many orbits which correspond to the finitely many coordinate linear subspaces. So X is a union of orbits and it follows that X is a toric variety and that the natural inclusion of X into \mathbb{P}^{n} is a toric morphism.

