MODEL ANSWERS TO HWK #2

1. Suppose that X is contained in a coordinate hyperplane. If this
coordinate hyperplane is defined by the equation X; = 0 then X is
defined by the monomial X; and polynomials which don’t involve X;.
Replacing P™ by this coordinate hyperplane and applying induction
we may therefore assume that X intersects the torus G' = Gj,, C P".
Acting by an element of G won’t change whether or not X is defined by
binomials, nor whether X is a toric variety. So we may as well assume
that the identity e =[1:1:1:---: 1] of G is contained in X.

By assumption we may find a dense open subset H = G* C X isomor-
phic to a torus where H C GG. Let Z be the closure of X. Then H is a
dense open subset of Z and the action of H extends to Z. Now G acts
on K[Xo, Xi,...,X,] and H acts on K[Xy, X1,...,X,] by restriction.
K[Xy, Xy,...,X,] decomposes as a direct sum of eigenspaces and these
eigenspaces are direct sums of eigenspaces for the action of G, that is,
the eigenspaces of the action of H have a basis of monomials. Let I be
the ideal of Z. Then I is invariant under the action of H and so [ is
generated by eigenpolynomials F'.

Suppose that we pick two monomials M; and M of the same degree
with the same eigenvalue. Now B = M; — M, vanishes at e. Therefore
it vanishes on the orbit of e, that is, on a dense subset of Z. Therefore
B vanishes on Z. But then it is clear that every eigenpolynomial ' € [
is a sum of binomials B € [I. It follows that Z is defined by finitely
many binomials Fi, Iy, ..., F,.

Note that H is the complement of the coordinate hyperplanes. Let
H; be a coordinate hyperplane. The stabiliser of H; in G is a torus
G; of dimension n — 1 which sits naturally inside H;. The intersection
of G; with H is a torus H; of codimension one in H. By induction
on the dimension, it follows that the orbits of H acting on Z are the
intersections of Z with the orbits of GG, that is, with the coordinate
linear subspaces. Thus X C Z is given by the non-vanishing of some
mononomials G, Gy, ..., Gy.

The last equivalence follows easily from what we have already proved.
2. Let U be the free abelian monoid generated by vy, vg, . .., vy, (so that
U is abstractly isomorphic to N™). Define a monoid homomorphism

U — S, by sending v; to u;. This is surjective and the kernel is
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generated by relations of the form

Z Qaiv; — Z bivi,

The group algebra A, is generated by z; = x". Define a ring homo-
morphism

where

Klzy, 29, ..., 2, — Ay,

by sending x; to x"“. Then the kernel is generated by equations of the
form
ai .as by .bo bm

am
T Ty o Xy =Xy Ty .. Ty,

Z a;U; = Z biu;,

since if we quotient out by these relations then we get the vector space
spanned by the monomials y*, u € S,.

3. Let Z be the closure of X. Then Z is an irreducible projective variety
defined by the vanishing of binomials. We first prove the stronger
statement that 7 is a non-normal toric variety. As Z is defined by
binomials, Hilbert’s basis theorem implies that Z is defined by finitely
many binomials. If Z is contained in a coordinate hyperplane H then
we might as well replace P" by this coordinate hyperplane. So we may
assume that Z intersects the torus G = GJ}, C P". If we act by G this
won’t change binomial equations, so that we might as well suppose that
Z contains the identity e = [1: 1 :1:---: 1] so that the equations
defining Z take the form monomial equals monomial.

Let W C A be the affine variety defined by the same polynomials
as Z. Suppose that W is defined by monomial equations of the form

where

ai _.ai ..as an __ ..bo b1 b b
Ty Ty Ty ... X" =Xy Ty Ty ... 2"
Let U be the free monoid with generators vy, vy,...,v, and let S be

the quotient monoid by the relations

Z a;v; — Z bl'l)l

Then the coordinate ring of W' is isomorphic to K[S]. Embed U C R™.
Then the vectors ) a;u; — > byv; define a subspace Uy. If we project U
onto U/Uy = R™ this defines an embedding S C M ~ Z™. Let 7 C Mg
be the cone spanned by the images g, uy, . .., u, of vy, v, ...,v,. Then
7 is a rational polyhedral cone. Let ¢ = 7 be the dual cone. We may
assume that 7 spans Mg so that o is strongly convex. Then 7 = ¢ and
we have already seen that S C S, is a non-normal affine toric variety

defined by the same equations as W. In other words W is a non-normal
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affine toric variety. But then the action of G] descends to an action on
Z, so that Z is a non-normal toric projective variety and the natural
inclusion morphism Z — P" is a toric morphism.

As in the proof of (1) it follows that the action of the torus H C Z on
Z has only finitely many orbits which correspond to the finitely many
coordinate linear subspaces. So X is a union of orbits and it follows
that X is a toric variety and that the natural inclusion of X into P" is
a toric morphism.



