MODEL ANSWERS TO HWK #2

1. Suppose that X is contained in a coordinate hyperplane. If this coordinate hyperplane is defined by the equation $X_i = 0$ then X is defined by the monomial X_i and polynomials which don't involve X_i . Replacing \mathbb{P}^n by this coordinate hyperplane and applying induction we may therefore assume that X intersects the torus $G = \mathbb{G}_m^n \subset \mathbb{P}^n$. Acting by an element of G won't change whether or not X is defined by binomials, nor whether X is a toric variety. So we may as well assume that the identity $e = [1:1:1:\cdots:1]$ of G is contained in X.

By assumption we may find a dense open subset $H = \mathbb{G}_m^k \subset X$ isomorphic to a torus where $H \subset G$. Let Z be the closure of X. Then H is a dense open subset of Z and the action of H extends to Z. Now G acts on $K[X_0, X_1, \ldots, X_n]$ and H acts on $K[X_0, X_1, \ldots, X_n]$ by restriction. $K[X_0, X_1, \ldots, X_n]$ decomposes as a direct sum of eigenspaces and these eigenspaces are direct sums of eigenspaces for the action of G, that is, the eigenspaces of the action of H have a basis of monomials. Let I be the ideal of Z. Then I is invariant under the action of H and so I is generated by eigenpolynomials F.

Suppose that we pick two monomials M_1 and M_2 of the same degree with the same eigenvalue. Now $B = M_1 - M_2$ vanishes at e. Therefore it vanishes on the orbit of e, that is, on a dense subset of Z. Therefore B vanishes on Z. But then it is clear that every eigenpolynomial $F \in I$ is a sum of binomials $B \in I$. It follows that Z is defined by finitely many binomials F_1, F_2, \ldots, F_p .

Note that H is the complement of the coordinate hyperplanes. Let H_i be a coordinate hyperplane. The stabiliser of H_i in G is a torus G_i of dimension n-1 which sits naturally inside H_i . The intersection of G_i with H is a torus H_i of codimension one in H. By induction on the dimension, it follows that the orbits of H acting on Z are the intersections of Z with the orbits of G, that is, with the coordinate linear subspaces. Thus $X \subset Z$ is given by the non-vanishing of some mononomials G_1, G_2, \ldots, G_q .

The last equivalence follows easily from what we have already proved. 2. Let U be the free abelian monoid generated by v_1, v_2, \ldots, v_m (so that U is abstractly isomorphic to \mathbb{N}^m). Define a monoid homomorphism $U \longrightarrow S_{\sigma}$ by sending v_i to u_i . This is surjective and the kernel is generated by relations of the form

$$\sum a_i v_i - \sum b_i v_i,$$

where

$$\sum a_i u_i = \sum b_i u_i$$

The group algebra A_{σ} is generated by $x_i = \chi^{u_i}$. Define a ring homomorphism

$$K[x_1, x_2, \ldots, x_n] \longrightarrow A_{\sigma},$$

by sending x_i to χ^{u_i} . Then the kernel is generated by equations of the form

$$x_1^{a_1}x_2^{a_2}\dots x_m^{a_m} = x_1^{b_1}x_2^{b_2}\dots x_m^{b_m},$$

where

$$\sum a_i u_i = \sum b_i u_i,$$

since if we quotient out by these relations then we get the vector space spanned by the monomials χ^u , $u \in S_{\sigma}$.

3. Let Z be the closure of X. Then Z is an irreducible projective variety defined by the vanishing of binomials. We first prove the stronger statement that Z is a non-normal toric variety. As Z is defined by binomials, Hilbert's basis theorem implies that Z is defined by finitely many binomials. If Z is contained in a coordinate hyperplane H then we might as well replace \mathbb{P}^n by this coordinate hyperplane. So we may assume that Z intersects the torus $G = \mathbb{G}_m^n \subset \mathbb{P}^n$. If we act by G this won't change binomial equations, so that we might as well suppose that Z contains the identity $e = [1 : 1 : 1 : \cdots : 1]$ so that the equations defining Z take the form monomial equals monomial.

Let $W \subset \mathbb{A}_K^{n+1}$ be the affine variety defined by the same polynomials as Z. Suppose that W is defined by monomial equations of the form

$$x_0^{a_1} x_1^{a_1} x_2^{a_2} \dots x_n^{a_n} = x_0^{b_0} x_1^{b_1} x_2^{b_2} \dots x_n^{b_n}.$$

Let U be the free monoid with generators v_0, v_1, \ldots, v_n and let S be the quotient monoid by the relations

$$\sum a_i v_i - \sum b_i v_i.$$

Then the coordinate ring of W is isomorphic to K[S]. Embed $U \subset \mathbb{R}^n$. Then the vectors $\sum a_i v_i - \sum b_i v_i$ define a subspace U_0 . If we project U onto $U/U_0 = \mathbb{R}^m$ this defines an embedding $S \subset M \simeq \mathbb{Z}^m$. Let $\tau \subset M_{\mathbb{R}}$ be the cone spanned by the images u_0, u_1, \ldots, u_n of v_0, v_1, \ldots, v_n . Then τ is a rational polyhedral cone. Let $\sigma = \check{\tau}$ be the dual cone. We may assume that τ spans $M_{\mathbb{R}}$ so that σ is strongly convex. Then $\tau = \check{\sigma}$ and we have already seen that $S \subset S_{\sigma}$ is a non-normal affine toric variety defined by the same equations as W. In other words W is a non-normal affine toric variety. But then the action of \mathbb{G}_m^m descends to an action on Z, so that Z is a non-normal toric projective variety and the natural inclusion morphism $Z \longrightarrow \mathbb{P}^n$ is a toric morphism.

As in the proof of (1) it follows that the action of the torus $H \subset Z$ on Z has only finitely many orbits which correspond to the finitely many coordinate linear subspaces. So X is a union of orbits and it follows that X is a toric variety and that the natural inclusion of X into \mathbb{P}^n is a toric morphism.