
MODEL ANSWERS TO HWK #2

1. Suppose that X is contained in a coordinate hyperplane. If this
coordinate hyperplane is defined by the equation Xi = 0 then X is
defined by the monomial Xi and polynomials which don’t involve Xi.
Replacing Pn by this coordinate hyperplane and applying induction
we may therefore assume that X intersects the torus G = Gn

m ⊂ Pn.
Acting by an element of G won’t change whether or not X is defined by
binomials, nor whether X is a toric variety. So we may as well assume
that the identity e = [1 : 1 : 1 : · · · : 1] of G is contained in X.
By assumption we may find a dense open subset H = Gk

m ⊂ X isomor-
phic to a torus where H ⊂ G. Let Z be the closure of X. Then H is a
dense open subset of Z and the action of H extends to Z. Now G acts
on K[X0, X1, . . . , Xn] and H acts on K[X0, X1, . . . , Xn] by restriction.
K[X0, X1, . . . , Xn] decomposes as a direct sum of eigenspaces and these
eigenspaces are direct sums of eigenspaces for the action of G, that is,
the eigenspaces of the action of H have a basis of monomials. Let I be
the ideal of Z. Then I is invariant under the action of H and so I is
generated by eigenpolynomials F .
Suppose that we pick two monomials M1 and M2 of the same degree
with the same eigenvalue. Now B = M1−M2 vanishes at e. Therefore
it vanishes on the orbit of e, that is, on a dense subset of Z. Therefore
B vanishes on Z. But then it is clear that every eigenpolynomial F ∈ I
is a sum of binomials B ∈ I. It follows that Z is defined by finitely
many binomials F1, F2, . . . , Fp.
Note that H is the complement of the coordinate hyperplanes. Let
Hi be a coordinate hyperplane. The stabiliser of Hi in G is a torus
Gi of dimension n− 1 which sits naturally inside Hi. The intersection
of Gi with H is a torus Hi of codimension one in H. By induction
on the dimension, it follows that the orbits of H acting on Z are the
intersections of Z with the orbits of G, that is, with the coordinate
linear subspaces. Thus X ⊂ Z is given by the non-vanishing of some
mononomials G1, G2, . . . , Gq.
The last equivalence follows easily from what we have already proved.
2. Let U be the free abelian monoid generated by v1, v2, . . . , vm (so that
U is abstractly isomorphic to Nm). Define a monoid homomorphism
U −→ Sσ by sending vi to ui. This is surjective and the kernel is
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generated by relations of the form∑
aivi −

∑
bivi,

where ∑
aiui =

∑
biui.

The group algebra Aσ is generated by xi = χui . Define a ring homo-
morphism

K[x1, x2, . . . , xn] −→ Aσ,

by sending xi to χui . Then the kernel is generated by equations of the
form

xa1
1 x

a2
2 . . . xam

m = xb11 x
b2
2 . . . xbmm ,

where ∑
aiui =

∑
biui,

since if we quotient out by these relations then we get the vector space
spanned by the monomials χu, u ∈ Sσ.
3. Let Z be the closure ofX. Then Z is an irreducible projective variety
defined by the vanishing of binomials. We first prove the stronger
statement that Z is a non-normal toric variety. As Z is defined by
binomials, Hilbert’s basis theorem implies that Z is defined by finitely
many binomials. If Z is contained in a coordinate hyperplane H then
we might as well replace Pn by this coordinate hyperplane. So we may
assume that Z intersects the torus G = Gn

m ⊂ Pn. If we act by G this
won’t change binomial equations, so that we might as well suppose that
Z contains the identity e = [1 : 1 : 1 : · · · : 1] so that the equations
defining Z take the form monomial equals monomial.
Let W ⊂ An+1

K be the affine variety defined by the same polynomials
as Z. Suppose that W is defined by monomial equations of the form

xa1
0 x

a1
1 x

a2
2 . . . xan

n = xb00 x
b1
1 x

b2
2 . . . xbnn .

Let U be the free monoid with generators v0, v1, . . . , vn and let S be
the quotient monoid by the relations∑

aivi −
∑

bivi.

Then the coordinate ring of W is isomorphic to K[S]. Embed U ⊂ Rn.
Then the vectors

∑
aivi−

∑
bivi define a subspace U0. If we project U

onto U/U0 = Rm this defines an embedding S ⊂M ' Zm. Let τ ⊂MR
be the cone spanned by the images u0, u1, . . . , un of v0, v1, . . . , vn. Then
τ is a rational polyhedral cone. Let σ = τ̌ be the dual cone. We may
assume that τ spans MR so that σ is strongly convex. Then τ = σ̌ and
we have already seen that S ⊂ Sσ is a non-normal affine toric variety
defined by the same equations as W . In other words W is a non-normal
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affine toric variety. But then the action of Gm
m descends to an action on

Z, so that Z is a non-normal toric projective variety and the natural
inclusion morphism Z −→ Pn is a toric morphism.
As in the proof of (1) it follows that the action of the torus H ⊂ Z on
Z has only finitely many orbits which correspond to the finitely many
coordinate linear subspaces. So X is a union of orbits and it follows
that X is a toric variety and that the natural inclusion of X into Pn is
a toric morphism.
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