
MODEL ANSWERS TO HWK #12

1. The versal deformation space is given by

y2 + x4 + ax2 + bx+ c,

where (a, b, c) ∈ C3 are coordinates on the base. The curve

y2 + x4 + ax2 + bx+ c = 0,

is singular if and only if

x4 + ax2 + bx+ c

has a double root, that is, if and only if

x4 + ax2 + bx = c and 4x3 + 2ax+ b,

has a common root. Using resultants, we get

−4a3b2 + 16a4c− 27b4 + 144ab2c− 128a2c2 + 256c3 = 0,

a surface in C3. The curve

y2 + x4 + ax2 + bx+ c = 0,

has a cusp, if and only if

x4 + ax2 + bx+ c

has a triple root, that is, if and only if

x4 + ax2 + bx+ c = (x− α)3(x− β),

for some α and β. Comparing the degree three term, we must have

β = −3α,

so that

x4 + ax2 + bx+ c = (x− α)3(x+ 3α) = x4 − 6α2x2 + 8α3x− 3α3.

Thus the locus of curves with a cusp is given by

(a, b, c) = (6α2, 8α3,−3α3).

Similarly, the curve

y2 + x4 + ax2 + bx+ c = 0,

has a cusp, if and only if

x4 + ax2 + bx+ c,

has two double roots, which happens if and only if b = 0.
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2. If C has a tacnode, then in local coordinates C is given by

y2 + x4 = 0.

It is clear that

y2 + x4 ∈ 〈y2, yx2, x4〉.
Similarly, if C has a singularity of type A2n+1, then C contains a zero
dimensional scheme isomorphic to

z = Spec
C[x, y]

〈y, xn〉2
.

3. Suppose we blow up the origin of M = C3,

π : N −→M

If coordinates are [S : T : U ] on the exceptional divisor, then there are
three coordinate patches on N :

• If S 6= 0, then y = tx and z = ux.
• If T 6= 0, then x = sy and z = uy.
• If U 6= 0, then x = sz and y = tz.

If we start with X = (f = 0) ⊂ C3, and we denote the strict transform
of X by Y , then we get an induced birational morphism

ψ : Y −→ X.

The exceptional locus C of ψ, which is a union of curves in Y , is given
by intersecting the exceptional divisor of π, a copy of P2, with Y .
We first deal with the case of an An-singularity. Let

X = (x2 + y2 + zn+1 = 0) ⊂ C3.

Then the equation of the total transform of X on the first coordinate
patch is given by

x2 + (tx)2 + (ux)n+1 = x2(1 + t2 + un+1xn−1),

so that the equation of the strict transform Y is given by

1 + t2 + un+1xn−1.

If x = 0, then we get t = ±1, and these are smooth points. So nothing
interesting is happening in this coordinate patch. Similarly if T 6= 0.
The only interesting coordinate patch is given by U 6= 0. The equation
of the total transform of X is

(sz)2 + (tz)2 + zn+1 = z2(s2 + t2 + zn−1),

so that the equation of the strict transform Y is given by

s2 + t2 + zn−1,
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which is the equation of a surface with an An−2-singularity. The ex-
ceptional locus C is given by setting z = 0. Suppose that n > 1. In
this case we get

s2 + t2 = 0,

which is the equation of a pair of lines, whose intersection point is the
unique singular point of the strict transform, the point s = t = z = 0
in the third coordinate patch is given by U 6= 0. If we blow up one
more time, then this pair of lines separates and the equations of the
strict transforms do not pass through the singular point. If n = 1,
notice that

s2 + t2 + 1 = 0,

is the equation of a smooth conic. It follows that we resolve singularities
in pn/2q steps, by which time we have introduced n exceptional curves,
copies of P1, joined in a chain. Thus the resolution graph is given by
the Dynkin diagram for An.
Now we consider what happens when we have a Dn-singularity. In this
case we start with

X = (x2 + y2z + zn−1 = 0) ⊂ C3,

where n ≥ 4. If we blow up the origin, then the equation of the total
transform of X on the first coordinate patch is given by

x2 + (tx)2ux+ (ux)n−1 = x2(1 + t2x+ un−1xn−3),

so that the equation of the strict transform Y is given by

1 + t2x+ un−1xn−3.

Again, nothing interesting is happening in this coordinate patch.
The equation of the total transform of X on the second coordinate
patch is given by

(sy)2 + y2(uy) + (uy)n−1 = y2(s2 + uy + un−1yn−3),

so that the equation of the strict transform Y is given by

s2 + uy + un−1yn−3.

The exceptional locus C is given by y = 0, the equation of a (double)
line. This divides into cases. If n 6= 4, then the only singular point
is at the origin, where we have an A1-singularity. If we blow up the
isolated A1-singularity we introduce another copy of P1. If n = 4, then
these equations reduce to

s2 + y(u+ u3),

and there are three singular points along C, of type A1, at the three
roots of u(1 + u2) = 0. Blowing up these three singular points, we
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get three copies of P1 and the resolution graph is given by the Dynkin
diagram for D4.
The equation of the total transform of X on the third coordinate patch
is given by

(sz)2 + (tz)2z + zn−1 = z2(s2 + t2z + zn−3),

so that the equation of the strict transform Y is given by

s2 + t2z + zn−3.

If n > 5, then this is the equation of a singularity of type Dn−2 at the
origin. If n = 4, then we have a smooth surface. Suppose that n = 5,
so that we have

s2 + t2z + z2.

Note that
s2 + t2z + z2 = s2 + (z + t2/2)2 − t4/4,

so that this is the equation of an A3-singularity. Note that C is given
by z = 0. If we blow up once, then we get two exceptional curves,
both copies of P1. The strict transform of C passes through the unique
singular point, which is an A1-singularity. Blowing this up, in total we
have the resolution graph is given by the Dynkin diagram for D5.
Putting all of this together, we get the Dynkin diagram for Dn.
Now we consider what happens when we have a E6-singularity. In this
case we start with

X = (x2 + y3 + z4 = 0) ⊂ C3.

If we blow up the origin, then the equation of the total transform of X
on the first coordinate patch is given by

x2 + (tx)3 + (ux)4 = x2(1 + t3x+ u3tx2),

so that the equation of the strict transform Y is given by

1 + t3x+ u3tx2.

Nothing interesting is happening in this coordinate patch. The equa-
tion of the total transform of X on the second coordinate patch is given
by

(sy)2 + y3 + (uy)4 = y2(s2 + y + u4y2)

so that the equation of the strict transform Y is given by

s2 + y + u4y2.

This is the equation of a smooth hypersurface.
The equation of the total transform of X on the third coordinate patch
is given by

(sz)2 + (tz)3 + z4 = z2(s2 + t3z + z2),
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so that the equation of the strict transform is given by

s2 + t3z + z2 = s2 + (z + t3/2)2 − t6/2,
which is the equation of an A5-singularity. The exceptional locus C
is the (double) line s = 0. If we blow up one more time, we get two
more exceptional curves, both copies of P1, and the strict transform of
C passes through the unique singular point, which is an A3-singularity.
Blowing up one more time, we get two more copies of P1, and again
the strict transform of C passes through the unique singular point.
Blowing up one more time introduces one more copy of P1 and the
strict transform of C intersects the middle curve of the A5-chain. This
is the graph of given by the Dynkin diagram for E6.
Now we consider what happens when we have a E7-singularity. In this
case we start with

X = (x2 + y3 + yz3 = 0) ⊂ C3.

If we blow up the origin, then the equation of the total transform of X
on the first coordinate patch is given by

x2 + (tx)3 + (tx)(ux)3 = x2(1 + t3x+ u3tx2),

so that the equation of the strict transform Y is given by

1 + t3x+ u3tx2.

Nothing interesting is happening in this coordinate patch. The equa-
tion of the total transform of X on the second coordinate patch is given
by

(sy)2 + y3 + y(uy)3 = y2(s2 + y + u3y2)

so that the equation of the strict transform Y is given by

s2 + y + u3y2.

This is the equation of a smooth hypersurface.
The equation of the total transform of X on the third coordinate patch
is given by

(sz)2 + (tz)3 + (tz)z3 = z2(s2 + t3z + tz2),

so that the equation of the strict transform is given by

s2 + t3z + tz2 = s2 + (z + t2/2)2t− t5/2,
which is the equation of a D6-singularity. The exceptional locus C
is the (double) line s = 0. If we blow up one more time, we get a
D4-singularity and an A1-singularity. The strict transform of C passes
through the D4-singularity. If we blow up the D4-singularity, we get
three A1-singularities. The strict transform of C passes through one
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of the A1-singularities, not the one through which the previous excep-
tional divisor passes. Putting all of this together, the resolution graph
is given by the Dynkin diagram for E7.
Now we consider what happens when we have a E8-singularity. In this
case we start with

X = (x2 + y3 + z5 = 0) ⊂ C3.

If we blow up the origin, then the equation of the total transform of X
on the first coordinate patch is given by

x2 + (tx)3 + (ux)5 = x2(1 + t3x+ u5x3),

so that the equation of the strict transform is given by

1 + t3x+ u5x3.

Nothing interesting is happening in this coordinate patch. The equa-
tion of the total transform of X on the second coordinate patch is given
by

(sy)2 + y3 + (uy)5 = y2(s2 + y + u5y3)

so that the equation of the strict transform is given by

s2 + y + u5y3.

This is the equation of a smooth hypersurface.
The equation of the total transform of X on the third coordinate patch
is given by

(sz)2 + (tz)3 + z5 = z2(s2 + t3z + z3),

so that the equation of the strict transform is given by

s2 + t3z + z3,

which is the equation of an E7-singularity. The exceptional locus C is
the (double) line s = 0. It is straightforward to check that the strict
transform of C on the minimal resolution of the E7-singularity, meets
the curve corresponding to the vertex of degree one, which is furthest
from the vertex of degree three. It follows that the resolution graph is
given by the Dynkin diagram for E8.
4. We compute the continued fraction expansion of 13/7.

13

7
= 2− 1

7
.

It follows that the resolution graph is a chain of 2 copies of P1, encoded
by the following Dynkin diagrame e
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We compute the continued fraction expansion of 15/3.
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It follows that the resolution graph is a chain of 4 copies of P1, encoded
by the following Dynkin diagrame e e e
4 2 2 2
5. X = X(F ) is given by some fan F . A birational toric morphism
Y −→ X is given by repeatedly adding one dimensional rays to F and
subdividing appropriately to get a fan G, so that Y = X(G) is the
toric variety associated to G.
Recall that if σ is a cone, then the corresponding affine toric variety
Uσ is smooth if and only if the primitive vectors v1, v2, . . . , vk spanning
the one dimensional faces of σ can be extended to a basis of the lattice
N .
The first step is to reduce to the case when every cone is simplicial,
that is the vectors v1, v2, . . . , vk are at least independent in the vector
space NR. As the faces of a simplicial cone are simplicial, it suffices to
reduce to the case when every maximal (with respect to inclusion) cone
is simplicial. We proceed by induction on the number d of maximal
cones which are not simplicial. Suppose that σ is a maximal cone which
is not simplicial. Pick a vector v ∈ N which belongs to the interior of
σ. Let F ′ be the fan obtained from F by inserting the ray spanned by
v, and subdividing accordingly. This has the result of subdividing σ
into σ1, σ2, . . . , σl simplicial subcones, and otherwise leaves every other
maximal cone unchanged. It follows that F ′ contains one less maximal
cone which is not simplicial. After d steps, we reduce to the case when
every cone in F is simplicial.
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Given a simplicial cone σ, let v1, v2, . . . , vk be the primitive generators
of its one dimensional faces. Let V ⊂ NR be the vector space spanned
by σ (equivalently, spanned by v1, v2, . . . , vk), and let

Λ = Zv1 + Zv2 + · · ·+ Zvk,
be the lattice spanned by v1, v2, . . . , vk. Then the quotient

N

Λ
,

is a finitely generated abelian group. Let

r = rσ,

be the cardinality of the torsion part. As noted above Uσ is smooth if
and only if rσ = 1 (in fact, if σ spans Nσ, then Uσ = Cn/G, for some
abelian group of cardinality rσ). Let

r = max
σ∈F

rσ,

be the maximum over all cones in F . We proceed by induction on
r. Pick a cone τ such that rτ = r, minimal with this property. Let
v1, v2, . . . , vl be the primitive generators of the one dimensional faces
of τ . Then we may find a vector w, in the interior of τ and belonging
to the lattice N , whose image in N/Λ′, where Λ′ is the lattice spanned
by v1, v2, . . . , vl, is torsion. Consider the fan F ′ obtained by inserting
the vector w. Let σ′ be a cone in F ′ which is not in F . Then σ′ ⊂
σ ∈ F , where σ′ and σ have the same dimension. If v1, v2, . . . , vk are
the primitive generators of the one dimensional faces of σ, then σ′ has
primitive generators w, v2, v3, . . . , vk. Let Λ′′ be the lattice spanned by
these vectors. As the image of w in N/Lambda is non-zero and torsion,
it follows that the order of the torsion part of N/Λ′′ is smaller than r.
It follows by induction on the r and the number of cones τ such that
rτ = r, that if we repeatedly insert vectors of the form w, then we
eventually reduced to the case r = 1, in which case we have constructed
a smooth toric variety Y , together with a toric birational morphism
Y −→ X.
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