MODEL ANSWERS TO HWK #11

5.5 We prove (a) and (c) by induction on the codimension of Y. By
assumption, Y is the intersection of a hypersurface of degree d and
another complete intersection subvariety Z of codimension one less
than the codimension of Y. There is an exact sequence

0—7Z— 0z — Oy — 0.

By assumption Z = Oz(—d). Twisting by Oz(n) preserves exactness
and by induction we have

h'(Z,0z(m)) =0,

for all 0 < i < ¢+ 1 and all positive integers m. This gives (c) and we
have

H%(Z,0z(n)) — H"(Y, Oy(n)),

is surjective. Composing this gives (a).

(b) Note that h°(X, Ox) = 1 and h°(Y, Oy ) is the number of connected
components of Y. Take n = 0.

(d) Immediate from (c).

5.6 (a)

(1) There is an exact sequence

0 —2Z—0x — 0 —0.
Note that Z = Ox(—2). Twisting by Ox(n), we get that
R(Q, Ogln, n)) = 0.
There is an exact sequence
0 —J — 0O — Op — 0,

where F is a curve of type (1,0), that is a curve of the form {p} x P'.
We have J = Og(—1,0). Twisting by Og(n,n) we have

0 — Og(n—1,n) — Og(n,n) — Op(n) — 0,
Now we have already seen that h'(Q, Og(n,n)) = 0 and the map
H%(Q, Og(n,n)) — H(F,Op(n)),
is surjective by inspection. It follows that

RY(Q, Og(n —1,n)) = 0.
1



(2) If a # b then we might as well assume that a < b. Twisting the
second exact sequence above by (a + 1,b), we get an exact sequence
0 — Og(a,b) — Og(a+1,b) — Op(b) — 0,

As b < 0, h%(F,Op(b)) = 0 and so taking the long exact sequence of
cohomology, we get

hl(Q’ OQ(G, b)) < hl(Q7 OQ(a +1, b))
Thus we may reduce to the case a = b, in which case we can apply (1).
(3) Let Y be a curve of type a, the union of a copies of P!. Then there
is an exact sequence

0 — Og(a,0) — Og — Oy — 0.
As

R(Y, Oy) = a and R(Q,0g) =1,

the result is clear.

(b)
(1) There is an exact sequence

0 —K—0g— 0Oy — 0.

As Y is a curve of type (a,b), we have K = Og(—a, —b). (a.2) implies
that

HY(Q,0q) — H(Y,Oy),
is surjective, so that

RO(Y, Oy) < 1.

But the LHS is equal to the number of connected components of Y.
(2) Follows from Bertini and the fact that Y is connected.
(3) By (I1.5.1.4), Y is projectively normal if and only if

HO(X, Ox(n)) — HO(Y, Oy(n)),
is surjective for all integers n. Since
HO(X, Ox (n)) — H(Q, Og(n)),
is surjective, Y is projectively normal if and only if
H(Q,0q(n)) — H(Y, Oy(n)),
is surjective. As h'(Q, Og(n)) = 0, this holds if and only if
B(Q, Ogln —a,n — b)) =0,

for all integers n.
If |[a —b] < 1, then Y is projectively normal by (a.1). Otherwise if
a < b—1 and we take n = b, then (a.3) shows that Y is not projectively

normal.
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(c) As always, consider the usual exact sequence
0 — Og(n—a,n—b) — Og(n) — Oy(n) — 0.
If n is sufficiently large, then by Serre vanishing, we have that
X(Y, Oy (n) = KO(Y, Oy () = h*(Q, Og(n)) — h(Q, Og(n— a,n—b)).

Suppose a # b. Then we may suppose that a < b. Consider the exact
sequence

0— Og(n—a—1,n—b) — Og(n —a,n—>b) — Op(n—b) — 0.
Assuming n is sufficiently large, we get that
R2(Q, Og(n —a,n — b)) = h°(Q,00(n —a—1,n—b)) + (n — b+ 1),
so that
h2(Q, Og(n —a,n —b)) = h*(Q,0g(n —b,n — b)) + (b—a)(n —b+1).
On the other hand,

h(Q, Og(n)) = b’

So

XY, 0y(n)=(n+1>-(n+1-0b>—(b—a)(n—>b+1)
=2b(n+1)—b*—bn+an+b*—ab—b+a
=(a+bn+a+b—ab,

which is then the Hilbert polynomial of Y. It follows that p,(Y) =
ab—a—0b+ 1.

5.8 (a) Apply (I1.6.7).

(b) As L is very ample, there is an embedding of X into P* such that
L = O%(1). Let H be a hyperplane section which avoids the inverse
image of the singular locus of X. Then D = H N X is a divisor on X
such that D = )" P;, where ); = f(P;) is a smooth point of X, for each
i. Let E =) @Q;. Then FE is a Cartier divisor on X. Let £y = Ox(E).
Then f*Ly ~ L. By (5.7.d), Ly is ample. By (I1.7.6) some power of £

is very ample and it follows by (I1.5.16.1) that X is projective.
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(c) Let X’ be the disjoint union of the Xy, Xs,..., X,. Then there is a
natural morphism 7: X’ — X. This gives rise to an exact sequence

0— Oy — .0y — 06 — 0,

where 0 is supported on a zero dimensional scheme. Taking the long
exact sequence of cohomology and using (4.5), we see that

Pic X — @ Pic X;,

is surjective. Pick ample line bundles £q, Lo, ..., L, on Xy, Xo, ..., X,.
Then we may find a line bundle £ such that £|x, ~ £;. £ is ample by
(5.7.c) and so X is projective.

(d) Let J be the ideal sheaf of X,oq in X. Let X} be subscheme of X
determined by Z*. Then X} C X, and the ideal sheaf 7, squares to
zero. By (4.6), there is an exact sequence

Pic X341 — Pic X}, — H*(X,T}).
By (2.7) the last group is zero. Composing, we get that
Pic X — Pic X,q,

is surjective. Let M be an ample line bundle on X,.q and let £ be a
line bundle on X whose restriction to X,eq is M. (5.7.c) implies that
L is ample.
5.9. Note that

; i 1 dr; dz;

ZT; T Tyl ZT; T

It follows that we do have a 1-cocycle.
As in the hint, we just have to show that 6(Ox(1)) # 0. Note that

Lly, ~ Oy,

via the map which sends f € O, (V) to X, f, so that Ox(1) is repre-
sented by the 1-cocycle
L1

T2 Zo
— on Uy, — on Ujs, and — on Uy.
Zo T o)

Let U = {Uy, Uy, Us}. The relevant commutative diagram is then
0— C'U,w) — C'U,0%) — C*U,0%) — 0

| | |

0 — C*(U,w) — C*U,0%) — C*(U,0%) — 0.
2. Note that e = 0 if and only if 1 € H°(X, Ox) is in the image of

¢: H'(X,G) — H°(X, Ox).
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Suppose that ¢(o) = 1. Define a sheaf homomorphism
Ox — G,
by sending f € G(U) to fo|y. It is easy to see that this defines a
splitting.
Conversely, if the exact sequence is split, it is clear that ¢ is surjective.

3. Let X = P! Pick m such that £(m) is globally generated. Then we
get a morphism of sheaves

Ox — E(m).

If we dualise this exact sequence we get an exact sequence
E *(—m) — O X-
Let IC be the kernel. If we pick a point p € X, we get an exact sequence
on stalks,
0— K, — O%, — Oxp — 0,

where

Ox,p ~ k[z],.
As klz], is a PID, it follows that

K, Oggpl,

so that IC is locally free of rank r — 1. Denoting by Q the dual of I,
we get an exact sequence

0— Ox — &(m) — Q@ —0.

As @ is locally free of rank r — 1, by induction on r, we have an exact
sequence

r—1
0— Ox — &E(m) — @(’)X(ai) — 0,
i=1

for some integers aq, as, ..., a,_1.
Suppose that we tensor this exact sequence by Ox(—k), where

k > maxa;,
7

and k > 0. Then h°(X,E(m — k)) = 0, since both h°(X, Ox(—k)) =0
and h°(X, Q(—k)) = 0. It follows that there is a smallest integer m/’
such that h°(X, E(m’)) # 0. Replacing m by m/, we get the same exact
sequence as before, but in addition we also have h°(X,E(m — 1)) = 0.
As
W (X, 0x(-1)) = (X, wx(1)) = h°(X, Ox(-1)) =0,
it follows that
hY(X,0(-1)) < 1.
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In particular a; — 1 < 0, that is a; < 1. It follows that

(X, K) = Z (X, Ox(—a;)) = Z h(X, Ox(a; —2)) = 0.

But then (2) implies that the short exact sequence

00— K—&(—m) — Ox — 0,
is split, so that £*(—m) is a direct sum of line bundles. But then £(m)
is a direct sum of the dual line bundles and so £ is also a direct sum

of line bundles.
It is easy to see that one can recover the sequence

a1,0d2,...,0p,

from the data of the
h(X, E(d)),
for all integers d.



