
MODEL ANSWERS TO HWK #11

5.5 We prove (a) and (c) by induction on the codimension of Y . By
assumption, Y is the intersection of a hypersurface of degree d and
another complete intersection subvariety Z of codimension one less
than the codimension of Y . There is an exact sequence

0 −→ I −→ OZ −→ OY −→ 0.

By assumption I = OZ(−d). Twisting by OZ(n) preserves exactness
and by induction we have

hi(Z,OZ(m)) = 0,

for all 0 < i < q + 1 and all positive integers m. This gives (c) and we
have

H0(Z,OZ(n)) −→ H0(Y,OY (n)),

is surjective. Composing this gives (a).
(b) Note that h0(X,OX) = 1 and h0(Y,OY ) is the number of connected
components of Y . Take n = 0.
(d) Immediate from (c).
5.6 (a)
(1) There is an exact sequence

0 −→ I −→ OX −→ OQ −→ 0.

Note that I = OX(−2). Twisting by OX(n), we get that

h1(Q,OQ(n, n)) = 0.

There is an exact sequence

0 −→ J −→ OQ −→ OF −→ 0,

where F is a curve of type (1, 0), that is a curve of the form {p} × P1.
We have J = OQ(−1, 0). Twisting by OQ(n, n) we have

0 −→ OQ(n− 1, n) −→ OQ(n, n) −→ OF (n) −→ 0,

Now we have already seen that h1(Q,OQ(n, n)) = 0 and the map

H0(Q,OQ(n, n)) −→ H0(F,OF (n)),

is surjective by inspection. It follows that

h1(Q,OQ(n− 1, n)) = 0.
1



(2) If a 6= b then we might as well assume that a < b. Twisting the
second exact sequence above by (a+ 1, b), we get an exact sequence

0 −→ OQ(a, b) −→ OQ(a+ 1, b) −→ OF (b) −→ 0,

As b < 0, h0(F,OF (b)) = 0 and so taking the long exact sequence of
cohomology, we get

h1(Q,OQ(a, b)) ≤ h1(Q,OQ(a+ 1, b)).

Thus we may reduce to the case a = b, in which case we can apply (1).
(3) Let Y be a curve of type a, the union of a copies of P1. Then there
is an exact sequence

0 −→ OQ(a, 0) −→ OQ −→ OY −→ 0.

As
h0(Y,OY ) = a and h0(Q,OQ) = 1,

the result is clear.
(b)
(1) There is an exact sequence

0 −→ K −→ OQ −→ OY −→ 0.

As Y is a curve of type (a, b), we have K = OQ(−a,−b). (a.2) implies
that

H0(Q,OQ) −→ H0(Y,OY ),

is surjective, so that
h0(Y,OY ) ≤ 1.

But the LHS is equal to the number of connected components of Y .
(2) Follows from Bertini and the fact that Y is connected.
(3) By (II.5.1.4), Y is projectively normal if and only if

H0(X,OX(n)) −→ H0(Y,OY (n)),

is surjective for all integers n. Since

H0(X,OX(n)) −→ H0(Q,OQ(n)),

is surjective, Y is projectively normal if and only if

H0(Q,OQ(n)) −→ H0(Y,OY (n)),

is surjective. As h1(Q,OQ(n)) = 0, this holds if and only if

h1(Q,OQ(n− a, n− b)) = 0,

for all integers n.
If |a − b| ≤ 1, then Y is projectively normal by (a.1). Otherwise if
a < b−1 and we take n = b, then (a.3) shows that Y is not projectively
normal.
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(c) As always, consider the usual exact sequence

0 −→ OQ(n− a, n− b) −→ OQ(n) −→ OY (n) −→ 0.

If n is sufficiently large, then by Serre vanishing, we have that

χ(Y,OY (n)) = h0(Y,OY (n)) = h0(Q,OQ(n))−h0(Q,OQ(n−a, n−b)).

Suppose a 6= b. Then we may suppose that a < b. Consider the exact
sequence

0 −→ OQ(n− a− 1, n− b) −→ OQ(n− a, n− b) −→ OF (n− b) −→ 0.

Assuming n is sufficiently large, we get that

h0(Q,OQ(n− a, n− b)) = h0(Q,OQ(n− a− 1, n− b)) + (n− b+ 1),

so that

h0(Q,OQ(n− a, n− b)) = h0(Q,OQ(n− b, n− b)) + (b− a)(n− b+ 1).

On the other hand,

h0(Q,OQ(n)) = h0(X,OX(n))− h0(X,OX(n− 2))

=

(
n+ 3

3

)
−
(
n+ 1

3

)
=

(n+ 1)[(n+ 3)(n+ 2)− n(n− 1)]

6
= (n+ 1)2.

So

χ(Y,OY (n)) = (n+ 1)2 − (n+ 1− b)2 − (b− a)(n− b+ 1)

= 2b(n+ 1)− b2 − bn+ an+ b2 − ab− b+ a

= (a+ b)n+ a+ b− ab,

which is then the Hilbert polynomial of Y . It follows that pa(Y ) =
ab− a− b+ 1.
5.8 (a) Apply (II.6.7).
(b) As L is very ample, there is an embedding of X̃ into Pn such that
L = OX̃(1). Let H be a hyperplane section which avoids the inverse

image of the singular locus of X. Then D = H ∩ X̃ is a divisor on X̃
such that D =

∑
Pi, where Qi = f(Pi) is a smooth point of X, for each

i. Let E =
∑
Qi. Then E is a Cartier divisor on X. Let L0 = OX(E).

Then f ∗L0 ' L. By (5.7.d), L0 is ample. By (II.7.6) some power of L
is very ample and it follows by (II.5.16.1) that X is projective.
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(c) Let X ′ be the disjoint union of the X1, X2, . . . , Xr. Then there is a
natural morphism i : X ′ −→ X. This gives rise to an exact sequence

0 −→ O∗X −→ i∗O∗X′ −→ δ −→ 0,

where δ is supported on a zero dimensional scheme. Taking the long
exact sequence of cohomology and using (4.5), we see that

PicX −→
⊕

PicXi,

is surjective. Pick ample line bundles L1,L2, . . . ,Lr on X1, X2, . . . , Xr.
Then we may find a line bundle L such that L|Xi

' Li. L is ample by
(5.7.c) and so X is projective.
(d) Let J be the ideal sheaf of Xred in X. Let Xk be subscheme of X
determined by Ik. Then Xk ⊂ Xk+1 and the ideal sheaf Ik squares to
zero. By (4.6), there is an exact sequence

PicXk+1 −→ PicXk −→ H2(X, Ik).

By (2.7) the last group is zero. Composing, we get that

PicX −→ PicXred,

is surjective. Let M be an ample line bundle on Xred and let L be a
line bundle on X whose restriction to Xred is M. (5.7.c) implies that
L is ample.
5.9. Note that

xj

xi

d

(
xi

xj

)
=

1

xixj

(xj dxi − xi dxj) =
dxi

xi

− dxj

xj

.

It follows that we do have a 1-cocycle.
As in the hint, we just have to show that δ(OX(1)) 6= 0. Note that

L|Ui
' OUi

,

via the map which sends f ∈ OUi
(V ) to Xif , so that OX(1) is repre-

sented by the 1-cocycle
x1

x0

on U01,
x2

x1

on U12, and
x0

x2

on U20.

Let U = {U0, U1, U2}. The relevant commutative diagram is then

0 - C1(U , ω) - C1(U ,O∗X′) - C1(U ,O∗X) - 0

0 - C2(U , ω)
?

- C2(U ,O∗X′)
?

- C2(U ,O∗X)
?

- 0.

2. Note that e = 0 if and only if 1 ∈ H0(X,OX) is in the image of

φ : H0(X,G) −→ H0(X,OX).
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Suppose that φ(σ) = 1. Define a sheaf homomorphism

OX −→ G,
by sending f ∈ G(U) to fσ|U . It is easy to see that this defines a
splitting.
Conversely, if the exact sequence is split, it is clear that φ is surjective.
3. Let X = P1. Pick m such that E(m) is globally generated. Then we
get a morphism of sheaves

OX −→ E(m).

If we dualise this exact sequence we get an exact sequence

E∗(−m) −→ OX .

Let K be the kernel. If we pick a point p ∈ X, we get an exact sequence
on stalks,

0 −→ Kp −→ Or
X,p −→ OX,p −→ 0,

where
OX,p ' k[x]x.

As k[x]x is a PID, it follows that

Kp ' Or−1
X,p ,

so that K is locally free of rank r − 1. Denoting by Q the dual of K,
we get an exact sequence

0 −→ OX −→ E(m) −→ Q −→ 0.

As Q is locally free of rank r− 1, by induction on r, we have an exact
sequence

0 −→ OX −→ E(m) −→
r−1⊕
i=1

OX(ai) −→ 0,

for some integers a1, a2, . . . , ar−1.
Suppose that we tensor this exact sequence by OX(−k), where

k > max
i
ai,

and k > 0. Then h0(X, E(m− k)) = 0, since both h0(X,OX(−k)) = 0
and h0(X,Q(−k)) = 0. It follows that there is a smallest integer m′

such that h0(X, E(m′)) 6= 0. Replacing m by m′, we get the same exact
sequence as before, but in addition we also have h0(X, E(m− 1)) = 0.
As

h1(X,OX(−1)) = h0(X,ωX(1)) = h0(X,OX(−1)) = 0,

it follows that
h0(X,Q(−1)) ≤ 1.
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In particular ai − 1 ≤ 0, that is ai ≤ 1. It follows that

h1(X,K) =
∑

i

h1(X,OX(−ai)) =
∑

i

h0(X,OX(ai − 2)) = 0.

But then (2) implies that the short exact sequence

0 −→ K −→ E∗(−m) −→ OX −→ 0,

is split, so that E∗(−m) is a direct sum of line bundles. But then E(m)
is a direct sum of the dual line bundles and so E is also a direct sum
of line bundles.
It is easy to see that one can recover the sequence

a1, a2, . . . , ar,

from the data of the
h0(X, E(d)),

for all integers d.
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