
MODEL ANSWERS TO HWK #10

4.1 Let U = {Ui} be an open affine cover of X which is locally finite.
Then V = {Vi} is an open affine cover of Y which is locally finite, where
Vi = f−1(Ui). Note that, if I is a finite set of indices, then there are
natural isomorphisms

H0(UI ,F) = H0(VI , f∗F).

It follows that
H∗(U ,F) ' H∗(V , f∗F).

But, by (II.5.8) we have that f∗F is quasi-coherent and so

H∗(X,F) ' H∗(U ,F) and H∗(Y,F) ' H∗(V , f∗F).

4.2 (a) Let M and L be the functions fields of X and Y (that is, the
residue fields of the generic points of X and Y ). Then M/L is a finite
field extension. Pick a basis m1,m2, . . . ,mr of the L-vector space M .
By assumption X = SpecA and then M is the field of fractions of A.
We may find m ∈ A and a1, a2, . . . , ar ∈ A such that

mi =
ai

m
.

LetM be the invertible sheaf corresponding to the Cartier divisor given
by m. Then there is a morphism of OY -modules,

α : Or
Y −→ f∗M,

which is an isomorphism at the generic point, since then it reduces to
the vector space isomorphism,

Lr −→M.

(b) If we apply Hom(·,F) to α, we get a morphism of sheaves

Hom(f∗M,F) −→ F r,

which is certainly an isomorphism at the generic point. Note that

Hom(f∗M,F),

is a coherent A = f∗OX-module. By (5.17e), there is a coherent OX-
module G such that

f∗G = Hom(f∗M,F).

(c) Let Y ′ ⊂ Y be a closed subscheme, let X ′ ⊂ f−1(Y ′) be a closed
subset of the inverse such that the induced morphism f ′ : X ′ −→ Y ′
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is surjective. Note that X ′ ⊂ X is affine, and f ′ is a finite morphism.
Indeed, to check f ′ is finite, we may assume that Y = SpecB is affine
and by assumption A is a finitely generated B-module. If I and J are
the defining ideals of X ′ and Y ′, then X ′ = SpecA/I, Y ′ = SpecB/J
and it is clear that A/I is a finitely generated B/J-module.
Note that fred : Xred −→ Yred is a surjective finite morphism of noether-
ian, separated and reduced schemes. As (3.1) implies that Y is affine
if and only if Yred is affine, we may assume that X and Y are reduced.
Suppose that Y ′ ⊂ Y is an irreducible component of Y . As f is surjec-
tive, there is an irreducible component X ′ of X which surjects to Y ′.
The induced morphism f ′ : X ′ −→ Y is a surjective finite morphism of
noetherian, separated and integral schemes. As (3.2) implies that Y
is affine if and only if each irreducible component Y ′ is affine, we may
assume that X and Y are integral. Let F be a quasi-coherent sheaf on
Y . We check that

H i(Y,F) = 0,

for all i > 0. By Noetherian induction and (3.7), we may suppose that

H i(Y ′,G) = 0,

for all proper closed subsets and all quasi-coherent sheaves G.
By (b), we may find an exact sequence

0 −→ R −→ f∗G −→ F r −→ Q −→ 0,

where R and Q are quasi-coherent sheaves, supported on proper closed
subsets of Y . By induction,

H i(Y,F r) = H i(Y, f∗G),

and the last group is isomorphic to

H i(X,G),

by (4.1). But this vanishes as X is affine and G is quasi-coherent. Thus

H i(Y,F) = 0,

for all i > 0 and all quasi-coherent sheaves F , and so Y is affine by
(3.7).
4.3 Let U = {Ux, Uy}, where Ux is the complement of the x-axis and Uy

is the complement of the y-axis. Then Ux and Uy are both isomorphic
to A1 × (A1 − {0}), so that they are both affine. The intersection of
Ux and Uy is (A1 − {0})× (A1 − {0}), which is again affine. As OX is
coherent, we have an isomorphism,

H1(U ,OX) ' H1(X,OX).
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Now an element of C1(U ,OX) is nothing but a section of H0(Ux ∩
Uy,OX). Since there are no triple intersections, every cochain is auto-
matically a cocycle, so that

Z1(U ,OX) = C1(U ,OX) = k[x, y]xy.

Now

C0(U ,OX) = H0(Ux,OX)⊕H0(Uy,OX).

Note that

H0(Ux,OX) = k[x, y]x and H0(Uy,OX) = k[x, y]y.

Thus

B1(U ,OX) = k[x, y]x + k[x, y]y.

It follows that a basis of

H1(X,OX),

is given by monomials of the form xiyj, where i < 0 and j < 0. In
particular,

h1(X,OX),

is not finite.
It is also interesting to calculate H1(X,OX) using the fact that X
is toric. The fan F corresponding to X is the union of the two one
dimensional cones spanned by e1 and e2 (but not including the cone
spanned by e1 and e2) and the origin (which is a face of both one
dimensional cones). Then the support of the fan F is

|F | = { (x, 0) |x ≥ 0 } ∪ { (0, y) | y ≥ 0 }.

The 0 divisor is T -Cartier and corresponds to the zero function on F .
According to (9.10),

H1(X,OX),

decomposes as a direct sum of eigenspaces, indexed by u ∈ M , where
each piece is given by a local cohomology group,

H1
Z(u)(|F |,C).

The last group is isomorphic to the relative cohomology of the pair

H1(|F |, Z(u),C).

The long exact sequence for the pair Z(u) ⊂ |F | is:

0 −→ H0(|F |, |F | − Z(u),C) −→ H0(|F | − Z(u),C) −→ H0(|F |,C) 99K

99K H1(|F |, |F | − Z(u),C) −→ H1(|F | − Z(u),C) −→ H1(|F |,C) −→ 0.
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Note that H0(|F |,C) = C and H1(|F | − Z(u),C) is always trivial. It
follows that

H1
Z(u)(|F |,C),

is non-trivial, equal to C, if and only if |F | = Z(u), if and only if
u = (i, j), where i ≤ 0 and j ≤ 0.
4.5 As in the hint any invertible sheaf L determines an element lU of
H1(U ,O∗X), where L|Ui

is trivial. If V is a refinement of U , then L|Vj

is certainly trivial, where Vj ⊂ Ui, and it is easy to check that

lV ∈ H1(V ,O∗X),

is the same as the image of lU under the natural map

H1(U ,O∗X) −→ H1(V ,O∗X).

Thus L determines an element of the direct limit. Using (5.4) this gives
us a map

π : Pic(X) −→ H1(X,O∗X).

If L and M are two invertible sheaves, then there is a common cover
U over which they are both trivial. It is easy to see that the image of
L ⊗
OX

M in H1(U ,O∗X) is lU+mU . But then π is a group homomorphism.

To give an element of H1(X,O∗X) is to give an element of H1(U ,O∗X),
for some open cover U . Using this 1-cocycle, one can construct an
invertible sheaf, L, which represents this 1-cocycle. Thus π is surjective.
Suppose that L is sent to zero. Then there is some open cover U for
which the corresponding 1-cocycle is a coboundary, represented by

σi ∈ H0(Ui,O∗X).

But then σ defines a global non-vanishing section of L, so that

L ' OX .

It follows that π is injective.
4.7 TBC
5.1 We can split the long exact sequence of cohomology into one short
exact sequence,

0 −→ H0(X,F ′) −→ H0(X,F) −→ Q −→ 0,

and one long exact sequence, which starts with

0 −→ Q′ −→ H1(X,F ′) −→ H1(X,F) . . . ,

where

Q′ =
H0(X,F ′′)

Q
.
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We have

h0(X,F) = h0(X,F ′) + dimk Q,

and, by an obvious induction,∑
i≥1

(−1)i−1hi(X,F ) =
∑
i≥1

(−1)i−1hi(X,F ′)+
∑
i≥0

(−1)i−1hi(X,F ′′)−dimk Q.

Adding the two equations together gives the result.
5.2 (a) Pick a divisor Y belonging to the linear system determined by
OX(1). Note that there is a morphism of sheaves

F(−1) −→ F ,

which is locally given by multiplication by the defining equation of Y ,
so that this map is an isomorphism away from Y . We get an exact
sequence

0 −→ R −→ F(−1) −→ F −→ Q −→ 0,

where Q and R are defined to fix exactness. Note that Q and R are
coherent and they are both supported on Y . If we tensor this exact
sequence by OX(n) we get

0 −→ R(n) −→ F(n− 1) −→ F(n) −→ Q(n) −→ 0,

By (5.1) we have

∆χ(F(n)) = χ(Q(n))− χ(R(n)).

By Noetherian induction the RHS is a polynomial and so χ(F(n)) is
also a polynomial.
(b) By Serre vanishing, there is an integer n0 such that

χ(F(n)) = h0(Pn,F(n)),

for n ≥ n0. But we have already seen that the RHS is precisely the
dimension of the nth graded piece of Γ∗(F).
5.3 (a) If X is integral, and k is an algebraically closed field, then there
is a projective variety X ′ such that t(X ′) = X. We have that

H0(X ′,OX′) = H0(X,OX).

But by (I.3.4), the LHS is isomorphic to k.
(b) Clear from (5.2).
(c) Let f : C 99K X be a rational map from a smooth curve to a
projective variety. Then f is a morphism. Thus if f : C1 99K C2 is a
birational map, then f is in fact an isomorphism. It is then clear that
pa(C) is a birational invariant.
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If C is a smooth plane curve of degree d then the arithmetic genus of
C is (

d− 1

2

)
.

In particular, if d ≥ 3, the arithmetic genus of C is non-zero, so that
C is not rational.
5.7 (a) Let F be any coherent sheaf on Y . Then G = i∗F is a coherent
sheaf on X. As L is ample, there is an integer n0 such that if n ≥ n0,
then

H i(X,G ⊗ Ln) for any n ≥ n0, i > 0.

On the other hand,

H i(Y,F ⊗ i∗Ln) = H i(X,G ⊗ Ln).

(b) Since Xred is a closed subscheme, (a) implies that Lred is ample.
Now suppose that Lred is ample. Let F be a quasi-coherent sheaf on
X and let N be the sheaf of nilpotent elements. Then

N k · L = 0,

for some k > 0. Let G = N ·F . By induction on k, there is a constant
n0 such that

H i(X,G ⊗ Ln) = 0,

for all n ≥ n0. There is a short exact sequence,

0 −→ G −→ F −→ H −→ 0,

where H is supported on Xred. Possibly increasing n0, we may assume
that

H i(X,H⊗Ln) = 0,

for all all n ≥ n0. Tensoring by Ln and taking the long exact sequence
of cohomology, we get

H i(X,F ⊗ Ln) = 0,

all n ≥ n0. But then L is ample by (5.3).
(c) As Xi is a closed subscheme of X, (a) implies that L⊗OXi

is ample.
Let I be the ideal sheaf of X1. Let F be a quasi-coherent sheaf. Then
there is an exact sequence

0 −→ I · F −→ F −→ G −→ 0,

where G is a quasi-coherent sheaf supported on X1. Tensoring by a
sufficiently high power of L and by induction on the number of irre-
ducible components, taking the long exact sequence of cohomology, we
get that

H i(X,F ⊗ Ln) = 0,
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all n ≥ n0. But then L is ample by (5.3).
(d) If L is ample, and F is a quasi-coherent sheaf on X, then f∗F is
quasi-coherent sheaf on Y and

H i(X,F ⊗ f ∗Ln) = H i(Y, f∗F ⊗ Ln) = 0,

for all n sufficiently large. Hence f ∗L is ample.
For the other direction, by (b) and (c) we may suppose that X and Y
are integral. Let F be a quasi-coherent sheaf on Y . As in the proof of
(4.2), we may find an exact sequence

0 −→ R −→ f∗G −→ F r −→ Q −→ 0,

where R and Q are quasi-coherent sheaves, supported on proper closed
subsets of Y , and G is a coherent sheaf on X. Tensoring by a high power
of L, applying Noetherian induction, we get

H i(Y,F r ⊗ Ln) = H i(X,G ⊗ f ∗Ln) = 0,

for all i > 0. But then L is ample.
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