
MODEL ANSWERS TO HWK #1

5.6 (a) See the lecture notes.
(b) Changing coordinates, and working locally, we may assume that
P = (0, 0) is the origin of A2. Let f(x, y) ∈ K[x, y] be a defining
equation. By assumption

f(x, y) = f2(x, y) + f3(x, y) + . . . ,

where fi(x, y) is homogeneous of degree i and f2(x, y) = lm, where
l and m are two homogeneous polynomials of degree one, which are
independent elements of the vector space of polynomials. Changing
coordinates, we may assume that l = x+ y and m = y, so that

f(x, y) = (x+ y)y + f3(x, y) + . . . .

Let π : X −→ A2 be the blow up of A2. Suppose that we have coordi-
nates [S : T ] on P1. Then X is covered by two copies of A2. On the
locus where S 6= 0, we have natural coordinates x and t = T/S. The
equation for the total transform is then

f(x, xt) = (x+ xt)xt+ f3(x, xt) + . . . .

Note that fi(x, xt) is divisible by xi, so that

fi(x, xt) = xig(x, t),

for some polynomial g(x, t) ∈ K[x, t]. It follows that we may factor out
x2 from f(x, xt) and so the equation for the strict transform is given
by

t(1 + t) + xg3(x, xt) + . . . .

If we set x = 0, then we get t = 0 or t = −1, and these are the two
points where the strict transform meets the exceptional divisor, at least
on the coordinate patch where S 6= 0.
If T 6= 0, then natural coordinates are y and s = S/T . The equation
for the total transform is then

f(ys, y) = (ys+ y)y + f3(ys, y) + . . . .

As before we may write

fi(ys, y) = yigi(y, s),

and so the equation for the strict transform is then

(s+ 1) + yg3(y, s) + . . . .
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Clearly this only meets the exceptional divisor at the point s = −1
(which is the same as the point t = −1).
(c) We are looking at the polynomial y2 +x4. On the coordinate patch
S 6= 0, we have

y2 + x4 = (xt)2 + x4 = x2(t2 + x2),

so that the equation for the strict transform is t2 + x2 = 0. As

t2 + x2 = (t+ ix)(t− ix),

where i2 = −1, this is the equation of a curve with a node. It is clear
that we can resolve this in two steps. Note that if we compute in the
other coordinate patch, where T 6= 0, then the strict transform is even
disjoint from the exceptional divisor.
(d) On the coordinate patch S 6= 0, we have

y3 + x5 = (xt)3 + x5 = x3(t3 + x2),

so that the equation for the strict transform is t3 + x2 = 0. This is
the equation of a curve with a cusp. One more blow up resolves this
singularity.
5.7 (a) Let v ∈ A3 be a point, not the origin and let [v] ∈ P2 be the
corresponding point of P2. By assumption, one of

∂f

∂x

∣∣
[v]

∂f

∂y

∣∣
[v]

and
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,

does not vanish at [v]. But then the corresponding partial does not
vanish at v. In particular, the only possible singular point is P . As the
degree of f is greater than one, all of the partials of f vanish at P , so
that P is the unique singular point of X.
(b) As φ is an isomorphism outside of P , the singular locus of X̃ is
located along the exceptional divisor of φ. Note that X̃ is the strict
transform of X inside the blow up of A3 at P . Introduce coordinates
(x, y, z) on A3 and [R : S : T ] on P2. Equations for the blow up of A3

are given by

xS = yR xT = zR and yT = zS.

Equations for the total transform on the open set T 6= 0 are given by

f(zr, zs, z) = 0.

As f is homogeneous of degree d, it follows that we may write

f(zr, zs, z) = zdf(r, s, 1),

so that f(r, s, 1) = 0 is the equation of the strict transform, that is,
the equation for the blow up X̃ in the chart A3, where T 6= 0. This is
clearly smooth, and by symmetry X̃ is smooth.
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(c) The curve f(r, s, 1) = 0 and z = 0 is the equation of the exceptional
divisor of φ, on the chart T 6= 0. This is the same as the equation of
the curve f(X, Y, Z) = 0 on the chart Z 6= 0. So, by symmetry, φ−1(P )
is clearly isomorphic to the original curve.
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