MODEL ANSWERS TO HWK \#1

5.6 (a) See the lecture notes.
(b) Changing coordinates, and working locally, we may assume that $P=(0,0)$ is the origin of \mathbb{A}^{2}. Let $f(x, y) \in K[x, y]$ be a defining equation. By assumption

$$
f(x, y)=f_{2}(x, y)+f_{3}(x, y)+\ldots,
$$

where $f_{i}(x, y)$ is homogeneous of degree i and $f_{2}(x, y)=l m$, where l and m are two homogeneous polynomials of degree one, which are independent elements of the vector space of polynomials. Changing coordinates, we may assume that $l=x+y$ and $m=y$, so that

$$
f(x, y)=(x+y) y+f_{3}(x, y)+\ldots
$$

Let $\pi: X \longrightarrow \mathbb{A}^{2}$ be the blow up of \mathbb{A}^{2}. Suppose that we have coordinates $[S: T]$ on \mathbb{P}^{1}. Then X is covered by two copies of \mathbb{A}^{2}. On the locus where $S \neq 0$, we have natural coordinates x and $t=T / S$. The equation for the total transform is then

$$
f(x, x t)=(x+x t) x t+f_{3}(x, x t)+\ldots .
$$

Note that $f_{i}(x, x t)$ is divisible by x^{i}, so that

$$
f_{i}(x, x t)=x^{i} g(x, t),
$$

for some polynomial $g(x, t) \in K[x, t]$. It follows that we may factor out x^{2} from $f(x, x t)$ and so the equation for the strict transform is given by

$$
t(1+t)+x g_{3}(x, x t)+\ldots
$$

If we set $x=0$, then we get $t=0$ or $t=-1$, and these are the two points where the strict transform meets the exceptional divisor, at least on the coordinate patch where $S \neq 0$.
If $T \neq 0$, then natural coordinates are y and $s=S / T$. The equation for the total transform is then

$$
f(y s, y)=(y s+y) y+f_{3}(y s, y)+\ldots .
$$

As before we may write

$$
f_{i}(y s, y)=y^{i} g_{i}(y, s)
$$

and so the equation for the strict transform is then

$$
(s+1)+y g_{3}(y, s)+\ldots
$$

Clearly this only meets the exceptional divisor at the point $s=-1$ (which is the same as the point $t=-1$).
(c) We are looking at the polynomial $y^{2}+x^{4}$. On the coordinate patch $S \neq 0$, we have

$$
y^{2}+x^{4}=(x t)^{2}+x^{4}=x^{2}\left(t^{2}+x^{2}\right)
$$

so that the equation for the strict transform is $t^{2}+x^{2}=0$. As

$$
t^{2}+x^{2}=(t+i x)(t-i x)
$$

where $i^{2}=-1$, this is the equation of a curve with a node. It is clear that we can resolve this in two steps. Note that if we compute in the other coordinate patch, where $T \neq 0$, then the strict transform is even disjoint from the exceptional divisor.
(d) On the coordinate patch $S \neq 0$, we have

$$
y^{3}+x^{5}=(x t)^{3}+x^{5}=x^{3}\left(t^{3}+x^{2}\right)
$$

so that the equation for the strict transform is $t^{3}+x^{2}=0$. This is the equation of a curve with a cusp. One more blow up resolves this singularity.
5.7 (a) Let $v \in \mathbb{A}^{3}$ be a point, not the origin and let $[v] \in \mathbb{P}^{2}$ be the corresponding point of \mathbb{P}^{2}. By assumption, one of

$$
\left.\left.\frac{\partial f}{\partial x}\right|_{[v]} \quad \frac{\partial f}{\partial y}\right|_{[v]} \quad \text { and }\left.\quad \frac{\partial f}{\partial z}\right|_{[v]},
$$

does not vanish at $[v]$. But then the corresponding partial does not vanish at v. In particular, the only possible singular point is P. As the degree of f is greater than one, all of the partials of f vanish at P, so that P is the unique singular point of X.
(b) As ϕ is an isomorphism outside of P, the singular locus of \tilde{X} is located along the exceptional divisor of ϕ. Note that \tilde{X} is the strict transform of X inside the blow up of \mathbb{A}^{3} at P. Introduce coordinates (x, y, z) on \mathbb{A}^{3} and $[R: S: T]$ on \mathbb{P}^{2}. Equations for the blow up of \mathbb{A}^{3} are given by

$$
x S=y R \quad x T=z R \quad \text { and } \quad y T=z S .
$$

Equations for the total transform on the open set $T \neq 0$ are given by

$$
f(z r, z s, z)=0 .
$$

As f is homogeneous of degree d, it follows that we may write

$$
f(z r, z s, z)=z^{d} f(r, s, 1),
$$

so that $f(r, s, 1)=0$ is the equation of the strict transform, that is, the equation for the blow up \tilde{X} in the chart \mathbb{A}^{3}, where $T \neq 0$. This is clearly smooth, and by symmetry \tilde{X} is smooth.
(c) The curve $f(r, s, 1)=0$ and $z=0$ is the equation of the exceptional divisor of ϕ, on the chart $T \neq 0$. This is the same as the equation of the curve $f(X, Y, Z)=0$ on the chart $Z \neq 0$. So, by symmetry, $\phi^{-1}(P)$ is clearly isomorphic to the original curve.

