
8. Relative proj and the blow up

We want to define a relative version of Proj, in pretty much the same
way we defined a relative version of Spec. We start with a scheme X
and a quasi-coherent sheaf S sheaf of graded OX-algebras,

S =
⊕
d∈N

Sd,

where S0 = OX . It is convenient to make some simplifying assump-
tions:

(†) X is Noetherian, S1 is coherent, S is locally generated by S1.

To construct relative Proj, we cover X by open affines U = SpecA.
S(U) = H0(U,S) is a graded A-algebra, and we get πU : ProjS(U) −→
U a projective morphism. If f ∈ A then we get a commutative diagram

ProjS(Uf ) - ProjS(U)

Uf

πUf

?
- U.

πU

?

It is not hard to glue πU together to get π : ProjS −→ X. We can
also glue the invertible sheaves together to get an invertible sheaf O(1).

The relative consruction is very similar to the old construction.

Example 8.1. If X is Noetherian and

S = OX [T0, T1, . . . , Tn],

then satisfies (†) and ProjS = PnX .

Given a sheaf S satisfying (†), and an invertible sheaf L, it is easy
to construct a quasi-coherent sheaf S ′ = S ?L, which satisfies (†). The
graded pieces of S ′ are Sd ⊗ Ld and the multiplication maps are the
obvious ones. There is a natural isomorphism

φ : P ′ = ProjS ′ −→ P = ProjS,

which makes the diagram commute

P ′
φ - P

X,

π

�

π′

-

and

φ∗OP (1) ' OP ′(1)⊗ π′∗L.
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Note that π is always proper; in fact π is projective over any open
affine and properness is local on the base.

There are two very interesting family of examples of the construction
of relative Proj. Suppose that we start with a locally free sheaf E of
rank r ≥ 2. Note that

S =
⊕

Symd E ,
satisfies (†). P(E) = ProjS is the projective bundle over X as-
sociated to E . The fibres of π : P(E) −→ X are copies of Pn, where
n = r − 1. We have

∞⊕
l=0

π∗OP(E)(l) = S,

so that in particular

π∗OP(E)(1) = E .
Also there is a natural surjection

π∗E −→ OP(E)(1).

Indeed, it suffices to check both statements locally, so that we may
assume that X is affine. The first statement is then (4.21) and the sec-
ond statement reduces to the statement that the sections x0, x1, . . . , xn
generate OP (1). The most interesting result is:

Proposition 8.2. Let g : Y −→ X be a morphism.
Then a morphism f : Y −→ P(E) over X is the same as giving an

invertible sheaf L on Y and a surjection g∗E −→ L.

Proof. One direction is clear; if f : Y −→ P(E) is a morphism over X,
then the surjective morphism of sheaves

π∗E −→ OP(E)(1),

pullsback to a surjective morphism

g∗E = f ∗(π∗E) −→ L = f ∗OP(E)(1).

Conversely suppose we are given an invertible sheaf L and a surjec-
tive morphism of sheaves

g∗E −→ L.
I claim that there is then a unique morphism f : Y −→ P(E) over X,
which induces the given surjection. By uniqueness, it suffices to prove
this result locally. So we may assume that X = SpecA is affine and

E =
n⊕
i=0

OX ,
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is free. In this case surjectivity reduces to the statement that the images
s0, s1, . . . , sn of the standard sections generate L, and the result reduces
to one we have already proved. �

Definition 8.3. Let X be a Noetherian scheme and let I be a coherent
sheaf of ideals on X. Let

S =
∞⊕
d=0

Id,

where I0 = OX and Id is the dth power of I. Then S satisfies (†).
π : ProjS −→ X is called the blow up of I (or Y , if Y is the

subscheme of X associated to I).

Example 8.4. Let X = An
k and let P be the origin. We check that we

get the usual blow up. Let

A = k[x1, x2, . . . , xn].

As X = SpecA is affine and the ideal sheaf I of P is the sheaf associ-
ated to 〈x1, x2, . . . , xn〉,

Y = ProjS = ProjS,

where

S =
∞⊕
d=0

Id.

There is a surjective map

A[y1, y2, . . . , yn] −→ S,

of graded rings, where yi is sent to xi. Y ⊂ PnA is the closed subscheme
corresponding to this morphism. The kernel of this morphism is

〈yixj − yjxi〉,
which are the usual equations of the blow up.

Definition 8.5. Let f : X −→ Y be a morphism of schemes. We are
going to define the inverse image ideal sheaf I ′ ⊂ OY . First we
take the inverse image of the sheaf f−1I, where we just think of f as
being a continuous map. Then f−1I ⊂ f−1OY . Let I ′ = f−1I · OY be
the ideal generated by the image of f−1I under the natural morphism
f−1OY −→ OX .

Theorem 8.6 (Universal Property of the blow up). Let X be a Noe-
therian scheme and let I be a coherent ideal sheaf.

If π : Y −→ X is the blow up of I then π−1I · OY is an invert-
ible sheaf. Moreover π is universal amongst all such morphisms. If
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f : Z −→ X is any morphism such that f−1I · OZ is invertible then
there is a unique induced morphism g : Z −→ Y which makes the dia-
gram commute

Z
g- Y

X.

π

?

f

-

Proof. By uniqueness, we can check this locally. So we may assume
that X = SpecA is affine. As I is coherent, it corresponds to an ideal
I ⊂ A and

X = Proj
∞⊕
d=0

Id.

Now OY (1) is an invertible sheaf on Y . It is not hard to check that
π−1I · OY = OY (1).

Pick generators a0, a1, . . . , an for I. This gives rise to a surjective
map of rings

φ : A[x0, x1, . . . , xn] −→ I,

whence to a closed immersion Y ⊂ PnA. The kernel of φ is gen-
erated by all homogeneous polynomials F (x0, x1, . . . , xn) such that
F (a0, a1, . . . , an) = 0.

Now the elements a0, a1, . . . , an pullback to global sections s0, s1, . . . , sn
of the invertible sheaf L = f−1I · OY and s0, s1, . . . , sn generate L. So
we get a morphism

g : Z −→ PnX ,
over X, such that g∗OPn

A
(1) = L and g−1xi = si. Suppose that

F (x0, x1, . . . , xn) is a homogeneous polynomial in the kernel of φ. Then
F (a0, a1, . . . , an) = 0 so that F (s0, s1, . . . , sn) = 0 in H0(X,Ld). It fol-
lows that g factors through Y .

Now suppose that f : Z −→ X factors through g : Z −→ Y . Then

f−1I · OZ = g−1(I · OY ) · OZ = g−1OY (1) · OZ .

Therefore there is a surjective map

g∗OY (1) −→ L.

But then this map must be an isomorphism and so g∗OY (1) = L.
si = g∗xi and uniqueness follows. �

Note that by the universal property, the morphism π is an isomor-
phism outside of the subscheme V defined by I. We may put the
universal property differently. The only subscheme with an invertible
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ideal sheaf is a Cartier divisor (local generators of the ideal, give lo-
cal equations for the Cartier divisor). So the blow up is the smallest
morphism which turns a subscheme into a Cartier divisor. Perhaps sur-
prisingly, therefore, blowing up a Weil divisor might give a non-trivial
birational map.

If X is a variety it is not hard to see that π is a projective, birational
morphism. In particular if X is quasi-projective or projective then so
is Y . We note that there is a converse to this:

Theorem 8.7. Let X be a quasi-projective variety and let f : Z −→ X
be a birational projective morphism.

Then there is an coherent ideal sheaf I and a commutative diagram

Z - Y

X,

π

�

f

-

where π : Y −→ X is the blow up of I and the top row is an isomor-
phism.

It is interesting to figure out the geometry behind the example of
a toric variety which is not projective. To warm up, suppose that we
start with A3

k. This is the toric variety associated to the fan spanned
by e1, e2, e3. Imagine blowing up two of the axes. This corresponds
to inserting two vectors, e1 + e2 and e1 + e3. However the order in
which we blow up is significant. Let’s introduce some notation. If we
blow up the x-axis π : Y −→ X and then the y-axis, ψ : Z −→ Y , let’s
call the exceptional divisors E1 and E2, and let E ′1 denote the strict
transform of E1 on Z. E1 is a P1-bundle over the x-axis. The strict
transform of the y-axis in Y intersects E1 in a point p. When we blow
up this curve, E ′1 −→ E1 blows up the point p. The fibre of E ′1 over the
origin therefore consists of two copies Σ1 and Σ2 of P1. Σ1 is the strict
transform of the fibre of E1 over the origin and Σ2 is the exceptional
divisor. The fibre Σ of E2 over the origin is a copy of P1. Σ and Σ2 are
the same curve in Z.

The example of a toric variety which is not projective is obtained
from P3 by blowing up three coordinate axes, which form a triangle.
The twist is that we do something different at each of the three coor-
dinate points. Suppose that π : X −→ P3 is the birational morphism
down to P3, and let E1, E2 and E3 be the three exceptional divisors.
Over one point we extract E1 first then E2, over the second point we
extract first E2 then E3 and over the last point we extract first E3 then
E1.
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To see what has gone wrong, we need to work in the homology and
cohomology groups of X. Any curve C in X determines an element
of [C] ∈ H2(X,Z). Any Cartier divisor D in X determines a class
[D] ∈ H2(X,Z). We can pair these two classes to get an intersection
number D ·C ∈ Z. One way to compute this number is to consider the
line bundle L = OX(D) associated to D. Then

D · C = degL|C .
If D is ample then this intersection number is always positive. This
implies that the class of every curve is non-trivial in homology.

Suppose the reducible fibres of E1, E2 and E3 over their images are
A1 +A2, B1 +B2 and C1 +C3. Suppose that the general fibres are A,
B and C. We suppose that A1 is attached to B, B1 is attached to C
and C1 is attached to A. We have

[A] = [A1] + [A2]

= [B] + [A2]

= [B1] + [B2] + [A2]

= [C] + [B2] + [A2]

= [C1] + [C2] + [B2] + [A2]

= [A] + [C2] + [B2] + [A2],

in H2(X,Z), so that

[A2] + [B2] + [C2] = 0 ∈ H2(X,Z).

Suppose that D were an ample divisor on X. Then

0 = D · ([A2] + [B2] + [C2]) > D · [A2] +D · [B2] +D · [C2] > 0,

a contradiction.
There are a number of things to say about this way of looking at

things, which lead in different directions. The first is that there is no
particular reason to start with a triangle of curves. We could start
with two conics intersecting transversally (so that they lie in different
planes). We could even start with a nodal cubic, and just do something
different over the two branches of the curve passing through the node.
Neither of these examples are toric, of course. It is clear that in the
first two examples, the morphism

π : X −→ P3,

is locally projective. It cannot be a projective morphism, since P3

is projective and the composition of projective is projective. It also
follows that π is not the blow up of a coherent sheaf of ideals on P3.

6



The third example is not even a variety. It is a complex manifold (and
in fact it is something called an algebraic space). In particular the
notion of the blow up in algebraic geometry is more delicate than it
might first appear.

The second thing is to consider the difference between the order
of blow ups of the two axes. Suppose we denote the composition of
blowing up the x-axis and then the y-axis by π1 : X1 −→ A3 and the
composition the other way by π2 : X1 −→ A3. Now X1 and X2 agree
outside the origin. Let φ : X1 99K X2 be the resulting birational map.
If A1 + A2 is the fibre of π1 over the origin and B1 + B2 is the fibre
of π2 over the origin, then φ is in fact an isomorphism outside A2 and
B2. So φ is a birational map which is an isomorphism in codimension
one, in fact an isomorphism outside a curve, isomorphic to P1. φ is an
example of a flop. In terms of fans, we have four vectors v1, v2, v3 and
v4, such that

v1 + v3 = v2 + v4,

and any three vectors span the lattice. If σ is the cone spanned by these
four vectors, then Q = Uσ is the cone over a quadric. There are two
ways to subdivide σ into two cones. Insert the edge connecting v1 to
v3 or the edge corresponding to v2 + v4. The corresponding morphisms
extract a copy of P1 and the resulting birational map between the
two toric varieties is a (simple) flop. One can also insert the vector
w = v1 + v3, to get a toric variety Y . The corresponding exceptional
divisor is P1 × P1. The toric varieties fit into a picture

Y

X1
-

�
X2

-

Q.
�

-

The two maps Y −→ Xi correspond to the two projections of P1 ×
P1 down to P1. By (8.7) πi : Xi −→ Q corresponds to blowing up a
coherent ideal sheaf. In fact it corresponds to blowing up a Weil divisor
(in fact this is a given, as πi does not extract any divisors), the plane
determined by either ruling.

Finally, it is interesting to wonder more about the original examples
of varieties which are not projective. Note that in the case when we
blow up either a triangle or a conic if we make one flop then we get
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a projective variety. Put differently, if we start with a projective va-
riety then it is possible to get a non-projective variety by flopping a
curve. When does flopping a curve mean that the variety is no longer
projective? A variety is projective if it contains an ample divisor. Am-
ple divisors intersect all curve positively. Note that any sum of ample
divisors is ample.

Definition 8.8. Let X be a proper variety. The ample cone is the
cone in H2(X,R) spanned by the classes of the ample divisors.

The Kleiman-Mori cone NE(X) in H2(X,R) is the closure of the
cone spanned by the classes of curves.

The significance of all of this is the following:

Theorem 8.9 (Kleiman’s Criteria). Let X be a proper variety (or even
algebraic space).

A divisor D is ample if and only if the linear functional

ψ : H2(X,R) −→ R,
given by φ(α) = [D] · α is strictly positive on NE(X)− {0}.

Using Kleiman’s criteria, it is not hard to show that if φ : X 99K Y
is a flop of the curve C and X is projective then Y is projective if and
only if the class of [C] generates a one dimensional face of NE(X).
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