
6. Divisors

Definition 6.1. We say that a scheme X is regular in codimension
one if every local ring of dimension one is regular, that is, the quotient
m/m2 is one dimensional, where m is the unique maximal ideal of the
corresponding local ring.

Regular in codimension one often translates to smooth in codimen-
sion one.

When talking about Weil divisors, we will only consider schemes
which are

(∗) noetherian, integral, separated, and regular in codimension one.

Definition 6.2. Let X be a scheme satisfying (∗). A prime divisor
Y on X is a closed integral subscheme of codimension one.

A Weil divisor D on X is an element of the free abelian group
DivX generated by the prime divisors.

Thus a Weil divisor is a formal linear combination D =
∑

Y nY Y of
prime divisors, where all but finitely many nY = 0. We say that D is
effective if nY ≥ 0.

Definition 6.3. Let X be a scheme satisfying (∗), and let Y be a prime
divisor, with generic point η. Then OX,η is a discrete valuation ring
with quotient field K.

The valuation νY associated to Y is the corresponding valuation.

Note that as X is separated, Y is determined by its valuation. If
f ∈ K and νY (f) > 0 then we say that f has a zero of order νY (f);
if νY (f) < 0 then we say that f has a pole of order −νY (f).

Definition-Lemma 6.4. Let X be a scheme satisfying (∗), and let
f ∈ K∗.

(f) =
∑
Y

νY (f)Y ∈ DivX.

Proof. We have to show that νY (f) = 0 for all but finitely many Y . Let
U be the open subset where f is regular. Then the only poles of f are
along Z = X−U . As Z is a proper closed subset and X is noetherian,
Z contains only finitely many prime divisors.

Similarly the zeroes of f only occur outside the open subset V where
g = f−1 is regular. �

Any divisor D of the form (f) will be called principal.

Lemma 6.5. Let X be a scheme satisfying (∗).
The principal divisors are a subgroup of DivX.
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Proof. The map
K∗ −→ DivX,

is easily seen to be a group homomorphism. �

Definition 6.6. Two Weil divisors D and D′ are called linearly
equivalent, denoted D ∼ D′, if and only if the difference is prin-
cipal. The group of Weil divisors modulo linear equivalence is called
the divisor Class group, denoted ClX.

We will also denote the group of Weil divisors modulo linear equiv-
alence as An−1(X).

Proposition 6.7. If k is a field then

Cl(Prk) ' Z.
Proof. Note that if Y is a prime divisor in Prk then Y is a hypersurface
in Pn, so that I = 〈G〉 and Y is defined by a single homogeneous
polynomial G. The degree of G is called the degree of Y .

If D =
∑
nY Y is a Weil divisor then define the degree degD of D

to be the sum ∑
nY deg Y,

where deg Y is the degree of Y .
Note that the degree of any rational function is zero. Thus there is

a well-defined group homomorphism

deg : Cl(Prk) −→ Z,
and it suffices to prove that this map is an isomorphism. Let H be
defined by X0. Then H is a hyperplane and H has degree one. The
divisor D = nH has degree n and so the degree map is surjective. One
the other hand, if D =

∑
niYi is effective, and Yi is defined by Gi,

(
∏
i

Gni/Xd
0 ) = D − dH,

where d is the degree of D. �

Example 6.8. Let C be a smooth cubic curve in P2
k. Suppose that the

line Z = 0 is a flex line to the cubic at the point P0 = [0 : 1 : 0]. If
the equation of the cubic is F (X, Y, Z) this says that F (X, Y, 0) = X3.
Therefore the cubic has the form X3 +ZG(X, Y, Z). If we work on the
open subset U3 ' A2

k, then we get

x3 + g(x, y) = 0,

where g(x, y) has degree at most two. If we expand g(x, y) as a polyno-
mial in y,

g0(x)y2 + g1(x)y + g2(x),
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then g0(x) must be a non-zero scalar, since otherwise C is singular (a
nodal or cuspidal cubic). We may assume that g0 = 1. If we assume
that the characteristic is not two, then we may complete the square to
get

y2 = x3 + g(x),

for some quadratic polynomial g(x). If we assume that the character-
istic is not three, then we may complete the cube to get

y2 = x3 + ax+ ab,

for some a and b ∈ k.
Now any two sets of three collinear points are linearly equivalent

(since the equation of one line divided by another line is a rational
function on the whole P2

k). In fact given any three points P , Q and P ′

we may find Q′ such that P +Q ∼ P ′ +Q′; indeed the line l = 〈P,Q〉
meets the cubic in one more point R. The line l′ = 〈R,P ′〉 then meets
the cubic in yet another point Q′. We have

P +Q+R ∼ P ′ +Q′ +R′.

Cancelling we get

P +Q ∼ P ′ +Q′.

It follows that if there are further linear equivalences then there are two
points P and P ′ such that P ∼ P ′. This gives us a rational function
f with a single zero P and a single pole P ′; in turn this gives rise to
a morphism C −→ P1 which is an isomorphism. It turns out that a
smooth cubic is not isomorphic to P1, so that in fact the only relations
are those generated by setting two sets of three collinear points to be
linearly equivalent.

Put differently, the rational points of C form an abelian group, where
three points sum to zero if and only if they are collinear, and P0 is
declared to be the identity. The divisors of degree zero modulo linear
equivalence are equal to this group.

It is interesting to calculate the Class group of a toric variety X,
which always satisfies (∗). By assumption there is a dense open subset
U ' Gn

m. The complement Z is a union of the invariant divisors.

Lemma 6.9. Suppose that X satisfies (∗), let Z be a closed subset and
let U = X \ Z.

Then there is an exact sequence

Zk −→ Cl(X) −→ Cl(U) −→ 0,

where k is the number of components of Z which are prime divisors.
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Proof. If Y is a prime divisor on X then Y ′ = Y ∩ U is either a prime
divisor on U or empty. This defines a group homomorphism

ρ : Div(X) −→ Div(U).

If Y ′ ⊂ U is a prime divisor, then let Y be the closure of Y ′ in X. Then
Y is a prime divisor and Y ′ = Y ∩ U . Thus ρ is surjective. If f is a
rational function on X and Y = (f), then the image of Y in Div(U) is

equal to (f |U). If Z = Z ′ ∪
⋃k
i=1 Zi where Z ′ has codimension at least

two, then the map which sends (m1,m2, . . . ,mk) to
∑
miZi generates

the kernel. �

Example 6.10. Let X = P2
k and C be an irreducible curve of degree

d. Then Cl(P2 − C) is equal to Zd. Similarly Cl(An
k) = 0.

It follows by (6.9) that there is an exact sequence

Zk −→ Cl(X) −→ Cl(U) −→ 0.

Applying this to X = An
k it follows that Cl(U) = 0. So we get an

exact sequence

0 −→ K −→ Zs −→ Cl(X) −→ 0.

We want to identify the kernel K. This is equal to the set of principal
divisors which are supported on the invariant divisors. If f is a rational
function such that (f) is supported on the invariant divisors then f has
no zeroes or poles on the torus; it follows that f = λχu, where λ ∈ k∗
and u ∈M .

It follows that there is an exact sequence

M −→ Zs −→ Cl(X) −→ 0.

Lemma 6.11. Let u ∈ M . Suppose that X is the affine toric variety
associated to a cone σ, where σ spans NR. Let v be a primitive generator
of a one dimensional ray τ of σ and let D be the corresponding invariant
divisor.

Then ordD(χu) = 〈u, v〉. In particular

(χu) =
∑
i

〈u, vi〉Di,

where the sum ranges over the invariant divisors.

Proof. We can calculate the order on the open set Uτ = A1
k × Gn−1

m ,
where D corresponds to {0} × Gn−1

m . Using this, we are reduced to
the one dimensional case. So N = Z, v = 1 and u ∈ M = Z. In this
case χu is the monomial xu and the order of vanishing at the origin is
exactly u. �
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It follows that if X = X(F ) is the toric variety associated to a fan
F which spans NR then we have short exact sequence

0 −→M −→ Zs −→ Cl(X) −→ 0.

Example 6.12. Let σ be the cone spanned by 2e1 − e2 and e2 inside
NR = R2. There are two invariant divisors D1 and D2. The principal
divisor associated to u = f1 = (1, 0) is 2D1 and the principal divisor
associated to u = f2 = (0, 1) is D2 −D1. So the class group is Z2.

Note that the dual σ̌ is the cone spanned by f1 and f1 + 2f2. Gener-
ators for the monoid Sσ = σ̌ ∩M are f1, f1 + f2 and f1 + 2f2. So the
group algebra

Aσ = k[x, xy, xy2] =
k[u, v, w]

〈v2 − uw〉
,

and X = Uσ is the quadric cone.
Now suppose we take the standard fan associated to P2. The invari-

ant divisors are the three coordinate lines, D1, D2 and D3. If f1 = (1, 0)
and f2 = (0, 1) then

(χf1) = D1 −D3 and (χf2) = D2 −D3.

So the class group is Z.

We now turn to the notion of a Cartier divisor.

Definition 6.13. Given a ring A, let S be the multiplicative set of
non-zero divisors of A. The localisation AS of A at S is called the
total quotient ring of A.

Given a scheme X, let K be the sheaf associated to the presheaf,
which associates to every open subset U ⊂ X, the total quotient ring of
Γ(U,OX). K is called the sheaf of total quotient rings.

Definition 6.14. A Cartier divisor on a scheme X is any global
section of K∗/O∗X .

In other words, a Cartier divisor is specified by an open cover Ui and
a collection of rational functions fi, such that fi/fj is a nowhere zero
regular function.

A Cartier divisor is called principal if it is in the image of Γ(X,K∗).
Two Cartier divisorsD andD′ are called linearly equivalent, denoted
D ∼ D′, if and only if the difference is principal.

Definition 6.15. Let X be a scheme satisfying (∗). Then every Cartier
divisor determines a Weil divisor.

Informally a Cartier divisor is simply a Weil divisor defined locally
by one equation. If every Weil divisor is Cartier then we say that X
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is factorial. This is equivalent to requiring that every local ring is a
UFD; for example every smooth variety is factorial.

Definition-Lemma 6.16. Let X be a scheme.
The set of invertible sheaves forms an abelian group Pic (X), where

multiplication corresponds to tensor product and the inverse to the dual.

Definition 6.17. Let D be a Cartier divisor, represented by {(Ui, fi)}.
Define a subsheaf OX(D) ⊂ K by taking the subsheaf generated by f−1

i

over the open set Ui.

Proposition 6.18. Let X be a scheme.

(1) The association D −→ OX(D) defines a correspondence be-
tween Cartier divisors and invertible subsheaves of K.

(2) OX(D1−D2) ' OX(D1)⊗OX(D2)
−1, as abstract OX-modules.

(3) Two Cartier divisors D1 and D2 are linearly equivalent if and
only if OX(D1) ' OX(D2), as abstract OX-modules.

Let’s consider which Weil divisors on a toric variety are Cartier. We
classify all Cartier divisors whose underlying Weil divisor is invariant;
we dub these Cartier divisors T -Cartier. We start with the case of the
affine toric variety associated to a cone σ ⊂ NR. By (6.18) it suffices to
classify all invertible subsheaves OX(D) ⊂ K. Taking global sections,
since we are on an affine variety, it suffices to classify all fractional
ideals,

I = H0(X,OX(D)) ⊂ H0(X,OX) = Aσ.

Invariance of D implies that I is graded by M , that is, I is a direct
sum of eigenspaces. As D is Cartier, I is principal at the distinguished
point xσ of Uσ, so that I/mI is one dimensional, where

m =
∑

k · χu.

It follows that I = Aσχ
u, so that D = (χu) is principal. In particular,

the only Cartier divisors are the principal divisors and X is factorial if
and only if the Class group is trivial.

Example 6.19. The quadric cone Q, given by xy − z2 = 0 in A3
k is

not factorial. We have already seen (6.12) that the class group is Z2.

If σ ⊂ NR is not maximal dimensional then every Cartier divisor on
Uσ whose associated Weil divisor is invariant is of the form (χu) but

(χu) = (χu
′
) if and only if u− u′ ∈ σ⊥ ∩M = M(σ).

So the T -Cartier divisors are in correspondence with M/M(σ).
Now suppose that X = X(F ) is a general toric variety. Then a

T -Cartier divisor is given by specifying an element u(σ) ∈ M/M(σ),
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for every cone σ in F . This defines a divisor (χ−u(σ)); equivalently a
fractional ideal

I = H0(X,OX(D)) = Aσ · χu(σ).

These maps must agree on overlaps; if τ is a face of σ then u(σ) ∈
M/M(σ) must map to u(τ) ∈M/M(τ).

The data

{u(σ) ∈M/M(σ) |σ ∈ F },
for a T -Cartier divisor D determines a continuous piecewise linear func-
tion φD on the support |F | of F . If v ∈ σ then let

φD(v) = 〈u(σ), v〉.

Compatibility of the data implies that φD is well-defined and continu-
ous. Conversely, given any continuous function φ, which is linear and
integral (that is, given by an element of M) on each cone, we can as-
sociate a unique T -Cartier divisor D. If D =

∑
aiDi the function is

given by φD(vi) = −ai, where vi is the primitive generator of the ray
corresponding to Di.

Note that

φD + φE = φD+E and φmD = mφD.

Note also that φ(χu) is the linear function given by u. So D and E are
linearly equivalent if and only if φD and φE differ by a linear function.

If X is any variety which satisfies (∗) then the natural map

Pic(X) −→ Cl(X),

is an embedding. It is an interesting to compare Pic(X) and Cl(X) on
a toric variety. Denote by DivT (X) the group of T -Cartier divisors.

Proposition 6.20. Let X = X(F ) be the toric variety associated to
a fan F which spans NR. Then there is a commutative diagram with
exact rows:

0 - M - DivT (X) - Pic(X) - 0

‖

0 - M - Zs
?

∩

- Cl(X)
?

- 0

In particular

ρ(X) = rank(Pic(X)) ≤ rank(Cl(X)) = s− n.

Further Pic(X) is a free abelian group.
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Proof. We have already seen that the bottom row is exact. If L is an
invertible sheaf then L|U is trivial. Suppose that L = OX(E). Pick a
rational function such that (f)|U = E|U . Let D = E − (f). Then D is
T -Cartier and exactness of the top row is easy.

Finally, Pic(X) is subgroup of the direct sum of M/M(σ) and each
of these is a lattice, whence Pic(X) is torsion free. �

Finally we end with an example to illustrate some of the difficulties
of working with varieties which are not regular in codimension one.

Example 6.21. Let C ⊂ P2
k be the nodal cubic ZY 2 = X3 + X2Z, so

that in the affine piece U3 ' A2
k, C ∩ U3 is given by y2 = x2 + x3. Let

N be the node. Note that if D is a Weil divisor whose support does
not contain N then D is automatically a Cartier divisor. As in the
case of the smooth cubic, if P , Q, R and P ′, Q′ and R′ are two triples
of collinear points on C (none of which are N), then P + Q + R ∼
P ′ +Q′ +R′.

Now we already know that the nodal cubic is not isomorphic to P1.
This implies that if P and P ′ are two smooth points of C then P and P ′

are not linearly equivalent. It follows, with a little bit of work, that all
linear equivalences on C are generated by the linear equivalences above.

The normalisation of C is isomorphic to P1; on the affine piece where
Z 6= 0 the normalisation morphism is given as t −→ (t2− 1, t(t2− 1)).
The inverse image of the node N contains two points of P1 and it follows
that C − {N} is isomorphic to Gm. In fact one can check that this is
an isomorphism of algebraic groups, where the group law on C − {N}
is given by declaring three collinear points to sum to zero.

There is an exact sequence of groups,

0 −→ Gm −→ Pic(C) −→ Z −→ 0,

where the first map sends P to P −P0 = [0 : 1 : 0], and the second map
is the degree map which sends D =

∑
niPi to

∑
ni.

Note that even though we can talk about Weil divisors on C, it only
makes sense to talk about linear equivalences of Weil divisors supported
away from N . Indeed, the problem is that any line through N cuts out
2N + R, where R is another point of C. Varying the line varies R
but fixes 2N . In terms of Cartier divisors, a line through N (and not
tangent to a branch) is equivalent to a length two scheme contained in
the line. As we vary the line, both R and the length two scheme vary.

It is interesting to consider what happens at the level of invertible
sheaves. Consider an invertible sheaf  L on C which is of degree zero,
that is, consider an invertible sheaf which corresponds to a Cartier
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divisor D of degree zero. If π : P1 −→ C is the normalisation map then

π∗  L = π∗OC(D) = OP1(π∗D),

has degree zero (to pullback a Cartier divisor, just pullback the defining
equations. It is easy to check that this commutes with pullback of the
sheaf). Since Pic(P1) ' Z, π∗L ' OP1, the trivial sheaf. Now to get a
sheaf on C we have to glue the two local rings over the inverse image
N1 and N2 of N . The only isomorphisms of two such local rings are
Gm acting by scalar multiplication (this is particularly transparent if
one thinks of a invertible sheaf as a line bundle; in this case we are
just identifying two copies of a one dimensional vector space) and this
is precisely the kernel of the degree map on P1).

There is a similar picture for the cuspidal cubic, given as Y 2Z = X3.
The only twist is that C − {N}, where N is the cusp, is now a copy of
Ga.
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