
12. Resolution of singularities II

The only reason why the approach sketched at the end of lecture
11 does not work in complete generality is that the induction breaks
down. In dimension n, we use embedded resolution of singularities in
dimension n − 1. In other words, we only prove that every quasi-
projective surface is birational to a smooth projective surface. But in
dimension three, to get resolution of threefolds, we need to know that
every divisor in a smooth threefold is birational to a divisor with global
normal crossings.

So let’s examine the problem of embedded resolution. As a warm
up, let’s look at the problem of embedded resolution of curves. We
start with a smooth surface S and a divisor B =

∑
Bi on S (so that

the prime components B1, B2, . . . , Bk are curves) and we want to find
a birational morphism

π : T −→ S,

such that the sum of the strict transform of the prime components of B
and of the exceptional divisors is a divisor with global normal crossings.

There is one way that the case of surfaces is significantly easier than
in higher dimensions. At every step, we only need to choose which
points to blow up on S. This means the problem is entirely local
over every point of S (this is very far from being the case in higher
dimensions; more about this later).

Given that the problem is local, we may use the Weirstrass polyno-
mial to keep track of the situation. Given any point p ∈ S, we pick
local coordinates x and y so that B is given by the zeroes of

yµ + aµ−2(x)yµ−2 + aµ−3(x)yµ−3 + · · ·+ a1(x)y + a0(x),

where a0(x), a1(x), . . . , aµ−2(x) are analytic functions of the complex
variable x. By assumption the multiplicity of ai(x) at 0 is at least
µ− i.

Now consider what happens when we blow up S at the point p. Then

S1 = Blp S ⊂ S × P1.

Suppose that we put coordinates [S : T ] on P1, so that S1 is defined
by xT = yS. Then the blow up is covered by two coordinate patches
S 6= 0 and T 6= 0. If S 6= 0, then y = xt, and coordinates upstairs are
given by (x, t). The strict transform of B is given by

tµ +
aµ−2(x)

x2
yµ−2 +

aµ−3(x)

x3
tµ−3 + · · ·+ a1(x)t+

a0(x)

xµ
.
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If we put y = t and

bi(x) =
ai(x)

xµ−i
,

then the equation of the strict transform of B is given by the zeroes of

yµ + bµ−2(x)yµ−2 + bµ−3(x)yµ−3 + · · ·+ b1(x)y + b0(x),

where the multiplicity of bi(x) is at most the multiplicity of ai(x) minus
µ− i.

Suppose we consider what happens at a point q lying over the point p,
that is, a point q of the exceptional divisor . We first check to see what
happens over the unique point [1 : 0] of the other coordinate patch. If
T 6= 0, then x = ys and it is easy to see that the strict transform of B
does not even pass through [1 : 0]. So we may assume that S 6= 0 and
y = xt. Note that the multiplicity of the strict transform of B at any
point q other than (x, t) = (0, 0) is less than µ. Indeed, let

βi = bi(0).

If we differentiate the equation

tµ + βµ−2y
µ−2 + βµ−3y

µ−3 + · · ·+ β1t+ β0.

for the strict transform µ− 1 times with respect to t, we get that

(µ)!t = 0,

so that if t = α is a root of multiplicity µ, then

t = 0.

Notice that this is heavily dependent on the fact the characteristic is
zero. On the other hand, it is pretty clear that at the point (x, t) =
(0, 0), the situation is better, since the multiplicity of each one of the
functions bi(x) dropped.

By induction on the multiplicity µ and the multiplicity of each ai(x),
after finitely many blow ups, f1 : S1 −→ S, we reduce to the case
when the strict transform B1 of B is smooth. Let E1 be the sum of
the exceptional divisors of f1. Note that (S1, E1) has global normal
crossings. It remains to reduce to the case when (S1, E1 + B1) has
normal crossings. Pick a point p1 ∈ S1, where (S1, B1 = E1) does not
have normal crossings. Then p1 is contained in exactly one component
of B1, since B1 is smooth, and at most two components of E1, since
E1 has global normal crossings. B1 is tangent to at most component of
E1 (since if there are two components of E1, then they have different
tangents). Blowing up finitely many times, we reduce to the case when
no component of B1 is tangent to a component of E1. At this point, the
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only problem is if three components contain the same point. Blowing
up each of these points, we are done.

Now let us consider the situation in higher dimensions. From the case
of embedded resolution of curves, it is clear that it is a good idea to
keep track of some invariants. So what invariants should we consider?

Example 12.1. Consider the surface

X = (y2 = zx2 + x3) ⊂ C3.

This surface is called the Whitney umbrella. If we project,

π : C3 −→ C,
by sending (x, y, z) to z, then we get a family of nodal curves

y2 = ax2 + x3,

a 6= 0, degenerating to a cuspidal curve,

y2 = x3.

The singular locus of X is the z-axis. Clearly the most singular point is
the origin. So let’s blow up the origin. Suppose that coordinates on the
exceptional divisor P2 are [A : B : C]. The most important coordinate
patch is C 6= 0, so that x = az and y = bz.

(bz)2 − z(az)2 − (az)3 = z2(b2 − a2z − a3z).

Replacing a by x and b by y, we get

y2 − x2z − x3z,

which hardly seems like progress.
In fact, we should blow up the z-axis. The blow up of C3 along the

z-axis sits inside C×P1. Let’s suppose that P1 has coordinates [S : T ].
Then xT = yS and there are two coordinate patches. The most relevant
is given by S 6= 0, so that y = xt, and we get

(xt)2 − zx2 − x3 = x2(t2 − zx− x),

and so the equation of the strict transform is

t2 − zx− x,
which is smooth.

There is another way to look at all of this. If we forget the embedding
of X into C3, and consider the normalisation ν : Xν −→ X of X,
then Xν is smooth and fibres over C as well. The inverse image of
the singular locus is a smooth curve C which double covers C. This
morphism ramifies over the origin. If Y −→ X denotes the blow up of
X at the origin, then the normalisation Y ν −→ Y is simply given by
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blowing up Xν. It is then clear that no amount of blowing up points on
X will ever improve the situation.

The moral of this example is that we don’t need to be so careful to
distinguish the most singular points. In fact the only real invariant we
need to keep track of is the multiplicity.

Unfortunately it is also clear that we need to be quite careful how
to choose the locus to blow up. For example consider

z2 − x3y3.

The singular locus consists of the x and y-axis. If we blow up either
axis it is clear that we are making progress (generically along the y-
axis we have z2−x3, which is resolved in three steps by blowing up the
origin). But we are not allowed to blow up an axis. The problem is
that this is only the local analytic picture. Globally the singular locus
might be a nodal cubic (for example). In this case it is not possible to
blow up one axis, since globally blowing up one axis forces us to blow
up the other axis. On the other hand, we cannot blow up both axes,
since this locus is not smooth.

The only possible relevant locus we could blow up which is in the
singular locus is the origin. On the blow up we have coordinates
(x, y, z) × [A : B : C], and equations expressing the equality [x : y :
z] = [A : B : C]. On the coordinate patch A 6= 0 we have y = bx,
z = cx so that

z2 − x3y3 = c2x2 − b3x6 = x2(c2 − b3x4).

Changing variables we have z2−x3y4 which is surely worse than before.
So how has the situation improved? The key thing is that the singular
locus is given by c = b = 0 and c = x = 0. The locus c = x = 0 lies in
the exceptional divisor; we created it ourselves, and so we know that
this locus is algebraically irreducible and not just locally analytically
irreducible. So we are allowed to blow up c = x = 0. In fact we are
allowed to blow up c = b = 0, since the first blow up separated the x
and y-axis. Notice though that we must blow up the strict transform
of the other axis (again, because globally it might be part of a single
irreducible algebraic curve).

It is clear from this example, that we must keep track of the sequence
of blow ups. Fortunately, it turns out we don’t need to keep track of
much of the history. All we really need to distinguish are components
of the original variety and the exceptional locus (we also need to order
the components by when they appear).

There is one simple way to make sure that we never get into trouble
passing from the local picture to the global picture. Note that on the

4



original surface, there is an obvious symmetry between x and y. If
every blow up respects this symmetry, we can never go wrong. We
cannot chose to blow up the x-axis, since this is not symmetric. If we
blow up the x-axis, then are allowed to blow up the strict transform of
the x-axis, provided we also blow up the strict transform of the y-axis.
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