HWK #3, DUE WEDNESDAY 02/23

We consider what happens if we replace \mathbb{G}_m^n by \mathbb{G}_a^n .

Definition 0.1. Let \mathbb{G} be a connected linear algebraic group. Let X be a normal quasi-projective variety with an action of \mathbb{G} . We say that X is a \mathbb{G} -variety, if the stabiliser of the generic point is trivial and there is a dense orbit.

Note that a \mathbb{G}_m^n -variety is the same as a toric variety.

Definition 0.2. A morphism of \mathbb{G} -varieties is an equivariant morphism. An isomorphism of \mathbb{G} is an isomorphism in the category of \mathbb{G} -varieties. A \mathbb{G} -equivalence is a commutative diagram

where α is is an automorphism of \mathbb{G} and j is an isomorphism.

1. Let X be a \mathbb{G} -variety and let $V \subset X$ be a closed subvariety, which is \mathbb{G} -invariant (that is, a union of \mathbb{G} -orbits). Show that the normalisation Y of the blow up of X along V is a \mathbb{G} -variety (you may assume the following; that there is an embedding of X into \mathbb{P}^n and action of \mathbb{G} on \mathbb{P}^n which extends the action of \mathbb{G} on X).

2. Show that \mathbb{P}^n has the structure of a \mathbb{G}^n_a -variety, such that the union of the orbits which contain only one point is a hyperplane.

3. Show that if the ground field is uncountable, then there are uncountably many inequivalent \mathbb{G}_a^2 -varieties.

4. Show that the action

$$(a, b, [X:Y:Z]) \longrightarrow [X + aY + (b + a^2/2)Z:Y + aZ:Z],$$

gives \mathbb{P}^2 the structure of a \mathbb{G}_a^2 -variety. Show that \mathbb{P}^2 has (at least) two inequivalent \mathbb{G}_a^2 -structures. 5. Show that $\mathbb{P}^1 \times \mathbb{P}^1$ may be given the structure of a \mathbb{G}_a^2 -variety. Show

5. Show that $\mathbb{P}^1 \times \mathbb{P}^1$ may be given the structure of a \mathbb{G}_a^2 -variety. Show how to get from this \mathbb{G}_a^2 -structure to one on \mathbb{P}^2 by only blowing up and blowing down unions of orbits.

Challenge problem 6. Consider the two inequivalent \mathbb{G}_a^2 -structures on \mathbb{P}^2 you found in 4 (it turns out that there are only two, so this is in fact unambiguous). Show that one cannot get from from one $\mathbb{G}_a^2\text{-structure}$ to the other by blowing up and blowing down orbits of $\mathbb{G}_a^2.$