HWK #12, DUE WEDNESDAY 5/4

1. Consider the versal deformation space of the tacnode, $y^2 + x^4$. Describe the locus of points which correspond to A_1 and A_2 singular points.

2. Let $C \subset \mathbb{A}^2$ be a curve. Show that if C has a tacnode then C contains a zero dimensional scheme isomorphic to the scheme

$$z = \operatorname{Spec} \frac{\mathbb{C}[x, y]}{\langle y, x^2 \rangle^2}.$$

What about for a singularity of type A_{2n+1} ?

3. Let $\pi: T \longrightarrow S$ be a resolution of singularities of a normal surface S. The **resolution graph** of π has vertices corresponding to the prime exceptional divisors of π and an edge between two vertices if and only if the two prime divisors intersect.

Show, by explicit calculation, that the *ADE*-singularities have a resolution graph of type the corresponding Dynkin diagram.

4. Find the resolution graph of a singularity of type 1/13(1,7) and of type 1/15(1,4).

5. Let X be a toric variety. Show that there is a resolution of singularities $\pi: Y \longrightarrow X$ which is toric (so that Y is a toric variety and π is a toric morphism).