PRACTICE FINAL
 MATH 18.022, MIT, AUTUMN 10

You have three hours. This test is closed book, closed notes, no calculators.
Name: \qquad
Signature: \qquad
Recitation Time: \qquad
There are 10 problems, and the total number of points is 200 . Show all your work. Please make your work as clear and easy to follow as possible.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Total	200	

1. (20pts) Find the shortest distance between the line l given parametrically by

$$
(x, y, z)=(1+2 t,-3+t, 2-t),
$$

and the intersection of the two planes Π_{1} and Π_{2} given by the equations

$$
x+y+z=3 \quad \text { and } \quad x-2 y+3 z=2 .
$$

2. (20pts) Let W be the solid inside the sphere $x^{2}+y^{2}+z^{2}=9$ and above the top sheet of the hyperboloid $x^{2}+y^{2}-z^{2}=-1$.
(a) Set up an integral in cylindrical coordinates for evaluating the volume of W.
(b) Evaluate this integral.
3. (20pts) Evaluate

$$
\int_{0}^{\pi / 2}\left(\int_{y}^{2 y} \frac{\sin x}{x} \mathrm{~d} x\right) \mathrm{d} y+\int_{\pi / 2}^{\pi}\left(\int_{y}^{\pi} \frac{\sin x}{x} \mathrm{~d} x\right) \mathrm{d} y
$$

4. (20pts) Let $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ be a regular smooth curve parametrised by arclength. Let $a \in I$ and suppose that
$\vec{T}(a)=\frac{4}{9} \hat{\imath}-\frac{7}{9} \hat{\imath}-\frac{4}{9} \hat{k}, \quad \vec{N}(a)=\frac{1}{9} \hat{\imath}-\frac{4}{9} \hat{\imath}+\frac{8}{9} \hat{k}, \quad \frac{d \vec{N}}{d s}(a)=-\frac{4}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\frac{1}{3} \hat{k}$.
Find:
(i) the unit binormal vector $\vec{B}(a)$.
(ii) the curvature $\kappa(a)$.
(iii) the torsion $\tau(a)$.
5. (20pts) Let

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y^{2} z^{3}-x^{2} y^{2} z^{2}+x^{3} y^{3}=1\right\} .
$$

(a) Show that in a neighbourhood of the point $P=(1,1,1)$, the subset S is the graph of a smooth function $z=f(x, y)$.
(b) Find the derivative $D f(1,1)$.
6. (20pts) Let K be the solid bounded by the four planes $x=0, y=0$, $z=0$ and $x+2 y+3 z=12$ and let $f: K \longrightarrow \mathbb{R}$ be the function $f(x, y, z)=x y z$.
(a) Show that f has a global maximum on K.
(b) Find this global maximum value of f on K.
7. (20pts) Let D be the region bounded by the four curves $x y=1$, $x y=3,2 y=x^{2}$ and $y=x^{2}$.
(a) Compute $\mathrm{d} x \mathrm{~d} y$ in terms of $\mathrm{d} u \mathrm{~d} v$, where $u=x y$ and $v=x^{2} / y$.
(b) Find the area of D.
8. (20pts) Find the line integral of the vector field

$$
\vec{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \hat{\imath}+\frac{x}{x^{2}+y^{2}} \hat{\jmath}
$$

along the following oriented curves:
(i) The circle C_{1} with equation $x^{2}+y^{2}=1$, oriented counter-clockwise.
(ii) The ellipse C_{2} with equation $x^{2}+2 y^{2}=4$, oriented counterclockwise.
9. (20pts) Find the surface scalar integral

$$
\iint_{S}\left(x^{2}+y^{2}\right) \mathrm{d} S
$$

where S is the sphere of radius a centred at the origin.
10. (20pts) A smooth vector field is defined on the whole of \mathbb{R}^{3}, except two lines L and M, which intersect at the point P. Suppose that $\operatorname{curl} \vec{F}=0$, and that

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{s}=-2, \quad \int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{s}=3 \quad \text { and } \quad \int_{C_{3}} \vec{F} \cdot \mathrm{~d} \vec{s}=1 .
$$

Find the following integrals. Give your reasons.
(a)

$$
\int_{C_{4}} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

(b)

$$
\int_{C_{5}} \vec{F} \cdot \mathrm{~d} \vec{s} .
$$

