THIRD PRACTICE MIDTERM MATH 18.022, MIT, AUTUMN 10

You ha	ave 50 minutes. This test is closed book, closed notes, no calculators
	Name:
	Signature:
	Recitation Time:
	here are 5 problems, and the total number of points is 100. Show your work. Please make your work as clear and easy to follow as vible.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20pts) For what values of λ , μ and ν does the function $f : \mathbb{R}^3 \longrightarrow \mathbb{R}$,

$$f(x, y, z) = \lambda x^2 + \mu xy + y^2 + \nu z^2$$

 $f(x,y,z)=\lambda x^2+\mu xy+y^2+\nu z^2,$ have a non-degenerate local minimum at (0,0,0)?

- 2. (20pts) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be the function f(x, y, z) = 2x + y z (i) Show that f has a global minimum on the ellipsoid $x^2 + 2y^2 + 3z^2 = 6$.

(ii) Find this minimum.

- 3. (20pts)
- (i) Draw a picture of the region of integration of

$$\int_0^1 \int_{1+x}^{\sqrt{9-x^2}} \mathrm{d}y \, \mathrm{d}x.$$

(ii) Change the order of integration of the integral.

4. (20pts) Let W be the region inside the two cylinders $x^2 + y^2 = 1$ and $y^2 + z^2 = 1$.

Set up an integral to calculate the volume of W and calculate this integral.

- 5. (20pts) Let D be the region in the first quadrant bounded by the curves $y^2=x, \ y^2=2x, \ xy=1$ and xy=4. (i) Find $\mathrm{d} u \, \mathrm{d} v$ in terms of $\mathrm{d} x \, \mathrm{d} y$, where $u=\frac{y^2}{x}$ and v=xy.

(ii) Set up an integral to calculate the area of the region D and calculate this integral.