THIRD PRACTICE MIDTERM

 MATH 18.022, MIT, AUTUMN 10You have 50 minutes. This test is closed book, closed notes, no calculators.
Name: \qquad
Signature: \qquad
Recitation Time: \qquad
There are 5 problems, and the total number of points is 100 . Show all your work. Please make your work as clear and easy to follow as possible.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20pts) For what values of λ, μ and ν does the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, $f(x, y, z)=\lambda x^{2}+\mu x y+y^{2}+\nu z^{2}$,
have a non-degenerate local minimum at $(0,0,0)$?
2. (20pts) Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be the function $f(x, y, z)=2 x+y-z$
(i) Show that f has a global minimum on the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=6$.
(ii) Find this minimum.
3. (20pts)
(i) Draw a picture of the region of integration of

$$
\int_{0}^{1} \int_{1+x}^{\sqrt{9-x^{2}}} \mathrm{~d} y \mathrm{~d} x
$$

(ii) Change the order of integration of the integral.
4. (20pts) Let W be the region inside the two cylinders $x^{2}+y^{2}=1$ and $y^{2}+z^{2}=1$.
Set up an integral to calculate the volume of W and calculate this integral.
5. (20pts) Let D be the region in the first quadrant bounded by the curves $y^{2}=x, y^{2}=2 x, x y=1$ and $x y=4$.
(i) Find $\mathrm{d} u \mathrm{~d} v$ in terms of $\mathrm{d} x \mathrm{~d} y$, where $u=\frac{y^{2}}{x}$ and $v=x y$.
(ii) Set up an integral to calculate the area of the region D and calculate this integral.

