MODEL ANSWERS TO HWK \#8
 (18.022 FALL 2010)

(1) (4.2.1) (a) $\nabla f(x, y)=(4-2 x, 6-2 y)=(0,0) \Rightarrow(x, y)=(2,3)$.
(b) $f(2+s, 3+t)-f(2,3)=-s^{2}-t^{2}<0$ for all $s, t . \therefore(2,3)$ is the maximum point.
(c) $H f(2,3)=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right) \cdot d_{1}=-2<0$ and $d_{2}=4>0$, hence it is negative definite. So $(2,3)$ is locally maximum.
(2) (4.2.6) $\nabla f(x, y)=\left(-2 y^{2}+3 x^{2}-1,4 y^{3}-4 x y\right)=(0,0)$. Therefore $y^{3}=x y$. If $y=0$, then $x=\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$. If $y \neq 0$, then $y^{2}=x$. So $3 x^{2}-2 x-1=0$ and $x=1,-\frac{1}{3}$. But since $x=y^{2} \geq 0, x=1$. So the critical points are $\left(\frac{1}{\sqrt{3}}, 0\right),\left(\frac{-1}{\sqrt{3}}, 0\right),(1,1)$ and $(1,-1)$. Since the Hessian is $H f(x, y)=\left(\begin{array}{cc}6 x & -4 y \\ -4 y & 12 y^{2}-4 x\end{array}\right)$,

- at $\left(\frac{1}{\sqrt{3}}, 0\right): H f=\left(\begin{array}{cc}2 \sqrt{3} & 0 \\ 0 & \frac{-4}{\sqrt{3}}\end{array}\right)$. Saddle point.
- at $\left(\frac{-1}{\sqrt{3}}, 0\right): H f=\left(\begin{array}{cc}-2 \sqrt{3} & 0 \\ 0 & \frac{4}{\sqrt{3}}\end{array}\right)$. Saddle point.
- at $(1,1): H f=\left(\begin{array}{cc}6 & -4 \\ -4 & 8\end{array}\right)$. Local minimum.
- at $(1,-1): H f=\left(\begin{array}{ll}6 & 4 \\ 4 & 8\end{array}\right)$. Local minimum.
(3) (4.2.8) $\nabla f(x, y)=\left(e^{x} \sin y, e^{x} \cos y\right)=(0,0)$. Since $e^{x} \neq 0$ for all x, we have $\sin y=\cos y=$ 0 . But there's no such y. So there's no critical point.
(4) (4.2.22) (a) $\nabla f(x, y)=(2 k x-2 y,-2 x+2 k y)=(0,0)$ at $(0,0)$, so it's a critical point. $H f(0,0)=\left(\begin{array}{cc}2 k & -2 \\ -2 & 2 k\end{array}\right)$, and $d_{1}=2 k, d_{2}=4 k^{2}-4 . \quad$ So $(0,0)$ is a nondegenerate local minimum (i.e. the Hessian is positive definite) iff $k>1$. It is local maximum (i.e. the Hessian is negative definite) iff $k<-1$.
(b) $\nabla g(x, y, z)=(2 k x+k z,-2 z-2 y, k x-2 y+k z)=(0,0,0)$ at $(0,0,0)$, so it's a critical point. $H f(0,0,0)=\left(\begin{array}{ccc}2 k & 0 & k \\ 0 & -2 & -2 \\ k & -2 & k\end{array}\right)$, and $d_{1}=2 k, d_{2}=-4 k, d_{3}=-2 k^{2}-8 k$. So $(0,0,0)$ is a nondegenerate local maximum (i.e. the Hessian is negative definite) iff $k<-4$. On the other hand, $(0,0,0)$ cannot be a nondegenrate local minimum (i.e. the Hessian is positive definite).
(5) (4.2.23) (a) $\nabla f(x, y)=(2 a x, 2 b y)=(0,0) \Rightarrow(x, y)=(0,0)$. So the origin is the only critical point. $H f(0,0)=\left(\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right)$ is positive definite iff $a>0, b>0$, and negative definite iff
$a<0, b<0$. So the origin is a local minimum if $a, b>0$, local maximum if $a, b<0$, and saddle point otherwise.
(b) $\nabla f(x, y, z)=(2 a x, 2 b y, 2 c z)=(0,0,0) \Rightarrow(x, y, z)=(0,0,0)$. So the origin is the only critical point. $H f(0,0,0)=\left(\begin{array}{ccc}2 a & 0 & 0 \\ 0 & 2 b & 0 \\ 0 & 0 & 2 c\end{array}\right)$ is positive definite iff $a>0, b>0, c>0$, and negative definite iff $a<0, b<0, c<0$. So the origin is a local minimum if $a, b, c>0$, local maximum if $a, b, c<0$, and saddle point otherwise.
(c) The very same argument as in (a) and (b) says the origin is the only critical point. Also the Hessian is the diagonal matrix with $2 a_{i}$ at each i-th diagonal entry. Clearly it is positive definite iff all a_{i} are positive, and negative definite iff all a_{i} are negative. So the origin is a local minimum if all a_{i} are positive, local maximum if all a_{i} are negative, saddle point otherwise.
(6) (4.2.33) Solve $\nabla f(x, y)=(\cos x \cos y,-\sin x \sin y)=(0,0)$ where $0<x<2 \pi$ and $0<y<$ 2π. If $\cos x=0$ then $\sin x \neq 0$, so $\sin y=0$, and $(x, y)=(\pi / 2, \pi),(3 \pi / 2, \pi)$. If $\cos x \neq 0$ then $\cos y=0$, so $\sin y \neq 0$ and $\sin x=0$. So $(x, y)=(\pi, \pi / 2),(\pi, 3 \pi / 2)$. Evaluating f at each of these critical points, we get $f(\pi / 2, \pi)=-1, f(3 \pi / 2, \pi)=1, f(\pi, \pi / 2)=f(\pi, 3 \pi / 2)=0$. Now look at the boundaries. If $x=0$ or $x=2 \pi$, then $f(x, y)=0$. If $y=0$ or $y=2 \pi$, then $f(x, y)=\sin x$, hence the maximum is 1 when $x=\pi / 2$ and the minimum is -1 when $x=3 \pi / 2$. Therefore comparing all the values, we conclude that the absolute maximum value of f is 1 , and the absolute minimum value of f is -1 in R. (Actually in this problem, if one notices that f cannot be greater than 1 or less than -1 , just finding points in R where f has value 1 or -1 confirms you that the absolute maximum and minimum values of f are 1 and -1.)
(7) (4.2.46(b)) Solving $\nabla f(x, y)=\left(3 y e^{x}-3 e^{3 x}, 3 e^{x}-3 y^{2}\right)=(0,0)$, we get $e^{x}=y^{2}, 3 y^{3}-3 y^{2}=0$. So $(0,1)$ is the only critical point. $H f(0,1)=\left(\begin{array}{cc}-6 & 3 \\ 3 & -6\end{array}\right)$ is negative definite, hence $(0,1)$ is a local maximum. However, let us fix $x=0$ and send y to the negative infinity, then $\lim _{y \rightarrow-\infty} f(0, y)=\lim _{y \rightarrow-\infty} 3 y-1-y^{3}=\infty$. Therefore f does not have a global maximum.
(i) Using Lagrange multiplier method, we get $\left(\begin{array}{c}y z \\ z x \\ x y\end{array}\right)=\lambda\left(\begin{array}{c}2(y+z) \\ 2(z+x) \\ 2(x+y)\end{array}\right)$. So $(y-x) z=$ $2 \lambda(y-x)$. If $x \neq y$ then $z=2 \lambda$, so $2 \lambda y=2 \lambda(y+2 \lambda)$, and $2 \lambda=z=0$, and $x y=0$, this is impossible since $a \neq 0$. So $x=y$. Similarly repeat this argument, and we get $x=y=z$. So $6 x^{2}=a$ implies $(x, y, z)=\left(\sqrt{\frac{a}{6}}, \sqrt{\frac{a}{6}}, \sqrt{\frac{a}{6}}\right)$ is the only critical point.
(ii) Without loss of generality, let $x<\frac{\sqrt{a}}{3 \sqrt{6}}$ at Q. Since $y z<x y+y z+x z=\frac{a}{2}$, it implies that $V(Q)=x y z<\frac{\sqrt{a}}{3 \sqrt{6}} \cdot \frac{a}{2}=\left(\frac{a}{6}\right)^{3 / 2}=V(P)$
(iii) K is defined by closed relations, hence it is closed. To prove that K is bounded, notice that $\frac{a}{2}=x y+y z+z x=x(y+z)+y z>x(y+z) \geq \frac{2 \sqrt{a}}{3 \sqrt{6}} x$. Hence x is bounded above as well as below. Similarly y, z are also bounded. Hence K is contained in a bounded box, hence K is bounded.
(iv) Since K is compact, there exists a maximum point of V. By (i), we know that V has the only critical point P. To see the values of V on the boundaries of K, let $x=\frac{\sqrt{a}}{3 \sqrt{6}}$ without loss of generality. Since $y z<x y+y z+x z=\frac{a}{2}$, we have $x y z=\frac{\sqrt{a}}{3 \sqrt{6}} y z<\left(\frac{a}{6}\right)^{3 / 2}=V(P)$. Hence the value of V on the boundary is always less than $V(P)$. Therefore V has the maximal value on K at P.
(v) By (ii), we know that V has smaller value than $V(P)$ at any point outside of K. Therefore V has the maximal value on A at P.
(9) (4.3.2) $\nabla f(x, y)=(0,1)=\lambda \nabla g(x, y)=\lambda(4 x, 2 y) . \therefore(x, y)=(0,2),(0,-2)$.
(10) (4.3.8) $(1,1,1)=\lambda(-2 x, 2 y, 0)+\mu(1,0,2)$. So $\mu=1 / 2,2 \lambda y=1,-2 \lambda x+\mu=1$. Therefore $\lambda= \pm \sqrt{3} / 4$ and $(x, y, z)=(-1 / \sqrt{3}, 2 / \sqrt{3},(1+1 / \sqrt{3}) / 2),(1 / \sqrt{3},-2 / \sqrt{3},(1-1 / \sqrt{3}) / 2)$.
(11) (4.3.18) Since the sphere is closed and bounded, it is compact. Hence there must be maximum and minimum points. By Lagrange multiplier method, we have $(1,1,-1)=$ $\lambda(2 x, 2 y, 2 z)$, hence $x=y=-z$. From $3 x^{2}=81$, we get two critical points $(x, y, z)=$ $(3 \sqrt{3}, 3 \sqrt{3},-3 \sqrt{3}),(-3 \sqrt{3},-3 \sqrt{3}, 3 \sqrt{3})$. At each point, the value of f is $9 \sqrt{3}$ and $-9 \sqrt{3}$. These are the maximum and minimum values.

