MODEL ANSWERS TO HWK \#7
 (18.022 FALL 2010)

(1) (a) F is a gradient field given by the potential $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}+C$.
(b) The flow line $r(t)=(x(t), y(t))$ satisfies $x^{\prime}(t)=x(t), y^{\prime}(t)=y(t)$ and $x(0)=a, y(0)=b$. The solution is $x(t)=A_{1} e^{t}$ and $y(t)=A_{2} e^{t}$ with $A_{1}=a$ and $A_{2}=b$.
(2) (3.3.2) See Figure 1 below.
(3) (3.3.21) The flow line $(x(t), y(t))$ satisfies $x^{\prime}(t)=x^{2}(t)$ and $y^{\prime}(t)=y$ with initial conditions $(x(1), y(1))=(1, e)$. Solving gives that $x(t)=\frac{1}{2-t}$ and $y(t)=e^{t}$.
(4) (3.3.24) The potential is $f(x, y, z)=x^{2}+y^{2}-3 z$.
(5) (4.1.8) We compute partial derivatives.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{-2 x}{\left(x^{2}+y^{2}+1\right)^{2}}\left|(0,0)=0, \quad \frac{\partial f}{\partial y}=\frac{-2 y}{\left(x^{2}+y^{2}+1\right)^{2}}\right|(0,0)=0 \\
\left.\frac{\partial^{2} f}{\partial x \partial x}=\frac{-2\left(x^{2}+y^{2}+1\right)^{2}-4 x^{2}}{\left(x^{2}+y^{2}+1\right)^{4}} \right\rvert\,(0,0)=-2, \frac{\partial^{2} f}{\partial y \partial y}(0,0)=-2 \\
\left.\frac{\partial^{2} f}{\partial x \partial y}=\frac{-8 x y}{\left(x^{2}+y^{2}+1\right)^{3}} \right\rvert\,(0,0)=0
\end{gathered}
$$

Hence the Taylor polynomial is

$$
P(x, y)=1-x^{2}-y^{2} .
$$

(6) (4.1.14) By (4.1.8) the Hessian at $(0,0)$ is

$$
\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right)
$$

(7) (4.1.18) The first order derivatives are

$$
f_{x}=3 x^{2}+2 x y, \quad f_{y}=x^{2}-z^{2}, \quad f_{z}=6 z^{2}-2 y z
$$

Figure 1. Vector field for (3.3.2)

The second order derivatives are

$$
f_{x x}=6 x+2 y, \quad f_{y y}=0, \quad f_{z z}=12 z-2 y, \quad f_{x y}=2 x, \quad f_{x z}=0, \quad f_{y z}=-2 z
$$

Hence the derivatives matrix at $(1,0,1)$ is

$$
D f(1,0,1)=(3,0,6),
$$

and the Hessian is

$$
\left(\begin{array}{ccc}
6 & 2 & 0 \\
2 & 0 & -2 \\
0 & -2 & 12
\end{array}\right)
$$

So
$P_{2}(x, y, z)=3+3(x-1)+6(z-1)+3(x-1)^{2}+6(z-1)^{2}+2(x-1) y-2 y(z-1)$.
(8) (4.1.20) First order derivatives are

$$
f_{x}=f, \quad f_{y}=2 f, \quad f_{z}=3 f
$$

Second order derivatives are

$$
f_{x x}=f, \quad f_{x y}=2 f, \quad f_{x z}=3 f, \quad f_{y z}=6 f, \quad f_{y y}=4 f, \quad f_{z z}=9 f .
$$

For the third order it is convenient to write $\left(x_{1}, x_{2}, x_{3}\right)$ for (x, y, z) and then for any i, j, k in $\{1,2,3\}$ we have

$$
f_{x_{i} x_{j} x_{k}}=i j k f .
$$

Since $f(0,0,0)=1$ we have

$$
\begin{aligned}
P_{3}(x, y, z) & =1+x+2 y+3 z+\frac{x^{2}}{2}+2 y^{2}+\frac{9 z^{2}}{2}+2 x y+3 x z+6 y z \\
& +\frac{x^{3}}{6}+\frac{8 y^{3}}{6}+\frac{27 z^{3}}{6}+6 x y z+x^{2} y+\frac{9 x^{2} z}{6}+2 y^{2} x+6 y^{2} z+\frac{9 z^{2} x}{2}+9 z^{2} y
\end{aligned}
$$

(9) (4.1.33)
(a) First order derivatives are

$$
f_{x}=-\sin x \sin y, \quad f_{y}=\cos x \cos y
$$

so they both vanish at $(0, \pi / 2)$. Second order derivatives are

$$
f_{x x}=-\cos x \sin y, \quad f_{y y}=-\cos x \sin y, \quad f_{x y}=-\sin x \cos y,
$$

So

$$
P_{2}(x, y)=1-\frac{x^{2}}{2}-\frac{(y-\pi / 2)^{2}}{2} .
$$

(b) We use the Lagrange form of the remainder. There are 8 terms in the formula. In each term, the absolute value of the third order derivative is at most 1 (because it is some combination of \cos and \sin) and $h_{i} h_{j} h_{k}$ is at most $(0.3)^{3}$. Hence the remainder is at most $\frac{8}{6}(0.3)^{3}=0.036$.
(a) First order derivatives are

$$
f_{x}=f, \quad f_{y}=2 f
$$

so at the origin their values are $(1,2)$. The second order derivatives are

$$
f_{x x}=f, \quad f_{y y}=4 f, \quad f_{x y}=2 f .
$$

So

$$
P_{2}(x, y)=1+x+2 y+\frac{x^{2}}{2}+2 y^{2}+2 x y .
$$

(b) Note that $f_{y y y}=8 f$ is the largest of the third order partial derivatives. As before, we have 8 terms, and each is at most $e^{0.3}(0.1)^{3}$ so the remainder is at most $\frac{8}{6} 8 e^{0.3}(0.1)^{3}$. Note that you can get a better bound if you consider each third order derivative separately.

