MODEL ANSWERS TO HWK \#6
 (18.022 FALL 2010)

(1) The curve C is given in rectangular coordinates by $\vec{r}(\theta)=(f(\theta) \cos (\theta), f(\theta) \sin (\theta))$. Then

$$
\vec{r}^{\prime}(\theta)=\left(f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta), f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)\right),
$$

and the arc length of C is given by

$$
\begin{aligned}
s(\theta) & =\int_{\alpha}^{\theta}\left\|\vec{r}^{\prime}(\tau)\right\| d \tau \\
& =\int_{\alpha}^{\theta} \sqrt{\left(f^{\prime}(\tau) \cos (\tau)-f(\tau) \sin (\tau)\right)^{2}+\left(f^{\prime}(\tau) \sin (\tau)+f(\tau) \cos (\tau)\right)^{2}} d \tau \\
& =\int_{\alpha}^{\theta} \sqrt{f(\tau)^{2}+f^{\prime}(\tau)^{2}} d \tau .
\end{aligned}
$$

(2) (3.1.18)

At $t=1$, the path $\mathbf{x}(t)=\left(\cos \left(e^{t}\right), 3 t^{2}, t\right)$ passes in point $\mathbf{x}(1)=(\cos (e), 3,1)$ and has velocity $\mathbf{x}(1)=\left.\left(-e^{t} \sin \left(e^{t}\right), 6 t, 1\right)\right|_{t=1}=(-e \sin (e), 6,1)$. Thus, the line tangent to the path at $t=1$ is

$$
\begin{align*}
l(t) & =(\cos (e), 3,1)+(t-1)(-e \sin (e), 6,1) \\
& =(\cos (e)+e \sin (e)-t \sin (e), 6 t-3, t) \tag{3}
\end{align*}
$$

(a) For the balls to collide, they have to be at the same point at the same time: $t^{2}-2=t$ and $\frac{t^{2}}{2}-1=5-t^{2}$, which solving for t yields $t=2$, and $\mathbf{x}(2)=\mathbf{y}(2)=(2,1)$.
(b) We have to find the angle between $\mathbf{x}^{\prime}(2)$ and $\mathbf{y}^{\prime}(2)$. We have $\mathbf{x}^{\prime}(2)=\left.(2 t, t)\right|_{t=2}=(4,2)$ and $\mathbf{y}^{\prime}(2)=\left.(1,-2 t)\right|_{t=2}=(1,-4)$, so the angle is

$$
\operatorname{arc} \cos \left(\frac{(4,2) \cdot(1,-4)}{\|(4,2)\|\|(1,-4)\|}\right)=\arccos \left(\frac{-4}{\sqrt{20} \sqrt{17}}\right)=\arccos \left(\frac{-2}{\sqrt{85}}\right) \approx 1.79 \mathrm{rad}
$$

(4) (3.1.30)
(a) We want to show that $\|\mathbf{x}(t)\|=1$, or equivalently $\|\mathbf{x}(t)\|^{2}=1$:

$$
\begin{aligned}
\|\mathbf{x}(t)\|^{2} & =\cos ^{2} t+\cos ^{2} t \sin ^{2} t+\sin ^{4} t \\
& =\cos ^{2} t+\left(\cos ^{2} t+\sin ^{2} t\right) \sin ^{2} t \\
& =\cos ^{2} t+\sin ^{2} t \\
& =1
\end{aligned}
$$

Figure 1. Astroid of Problem 6
(b) We want to show that $\mathbf{x}(t) \cdot \mathbf{v}(t)=0$, where the velocity vector is $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)=$ $\left(-\sin t,-\sin ^{2} t+\cos ^{2} t, 2 \sin t \cos t\right)$:

$$
\begin{aligned}
\mathbf{x}(t) \cdot \mathbf{v}(t) & =-\cos t \sin t-\cos t \sin ^{3} t+\cos ^{3} t \sin t+2 \sin ^{3} t \cos t \\
& =\cos t \sin t\left(-1+\sin ^{2} t+\cos ^{2} t\right) \\
& =0
\end{aligned}
$$

(c) If $\mathbf{x}(t)$ is a differentiable path that lies on a sphere centered at the origin, then $\mathbf{x}(t)$ has constant length equal to the radius of that sphere. Proposition 1.7 then tells us that for all values of the parameter t, the position vector $\mathbf{x}(t)$ is perpendicular to its derivative $\frac{d \mathbf{x}(t)}{d t}$, which is the velocity vector $\mathbf{v}(\mathbf{t})$.
(5) (3.1.32)

The function $\|\mathbf{x}(t)\|^{2}$ has a minimum at t_{0}, so its derivative must vanish:

$$
\left.\frac{d\|\mathbf{x}(t)\|^{2}}{d t}\right|_{t=t_{0}}=2 \mathbf{x}\left(t_{0}\right) \cdot \mathbf{x}^{\prime}\left(t_{0}\right)=0 .
$$

(6) (3.2.7)

For a sketch of the curve, see Figure 1.
The velocity vector and the speed for this path are

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\left(-3 a \cos ^{2} t \sin t, 3 a \sin ^{2} t \cos t\right) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{9 a^{2} \cos ^{4} t \sin ^{2} t+9 a \sin ^{4} t \cos ^{2} t}=3 a \sin t \cos t .
\end{aligned}
$$

Since the curve is piecewise C^{1}, the length of the total curve is the sum of the lengths of the four smooth pieces, or since the pieces are all congruent, the total length is

$$
L=4 \int_{0}^{\frac{\pi}{2}}\left\|\mathbf{x}^{\prime}(t)\right\| d t=12 a\left(\frac{\sin ^{2} t}{2}\right)_{t=0}^{\frac{\pi}{2}}=6 a .
$$

(7) (3.2.12)
(a) The velocity vector and speed for this path are

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\left(e^{a t}(a \cos (b t)-b \sin (b t)), e^{a t}(a \sin (b t)+b \cos (b t)), a e^{a t}\right) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =e^{a t} \sqrt{(a \cos (b t)-b \sin (b t))^{2}+(a \sin (b t)+b \cos (b t))^{2}+a^{2}} \\
& =e^{a t} \sqrt{2 a^{2}+b^{2}}
\end{aligned}
$$

The arc length parameter is

$$
s(t)=\int_{0}^{t} e^{a \tau} \sqrt{2 a^{2}+b^{2}} d \tau=\frac{e^{a t}-1}{a} \sqrt{2 a^{2}+b^{2}}=\left(e^{a t}-1\right) \sqrt{2+\left(\frac{b}{a}\right)^{2}}
$$

(b) Solving $s=\left(e^{a t}-1\right) \sqrt{2+\left(\frac{b}{a}\right)^{2}}$ for t we get $t=\frac{1}{a} \log \Delta(s)$, where $\Delta(s)=1+\frac{s}{\sqrt{2+\left(\frac{b}{a}\right)^{2}}}$. Then,

$$
\mathbf{x}(s)=\Delta(s)\left(\cos \left(\frac{b}{a} \log \Delta(s)\right), \sin \left(\frac{b}{a} \log \Delta(s)\right), 1\right)
$$

(8) (a)Differentiating and using the Frenet-Serret formulas $\vec{T}^{\prime}(s)=\kappa(s) \vec{N}(s), \vec{N}^{\prime}(s)=-\kappa(s) \vec{T}(s)+$ $\tau(s) \vec{B}(s)$ and $\vec{B}^{\prime}(s)=-\tau(s) \vec{N}(s)$ we obtain

$$
\begin{aligned}
& \frac{d}{d s}\left(\left\|\vec{T}_{1}(s)-\vec{T}_{2}(s)\right\|^{2}+\left\|\vec{N}_{1}(s)-\vec{N}_{2}(s)\right\|^{2}+\left\|\vec{B}_{1}(s)-\vec{B}_{2}(s)\right\|^{2}\right)= \\
& =2\left(\left(\vec{T}_{1}-\vec{T}_{2}\right) \cdot\left(\vec{T}_{1}^{\prime}-\vec{T}_{2}^{\prime}\right)+\left(\vec{N}_{1}-\vec{N}_{2}\right) \cdot\left(\vec{N}_{1}^{\prime}-\vec{N}_{2}^{\prime}\right)+\left(\vec{B}_{1}-\vec{B}_{2}\right) \cdot\left(\vec{B}_{1}^{\prime}-\vec{B}_{2}^{\prime}\right)\right)= \\
& =-2\left(\kappa\left(\vec{T}_{1} \cdot \vec{N}_{2}+\vec{T}_{2} \cdot \vec{N}_{1}\right)-\kappa\left(\vec{N}_{1} \cdot \vec{T}_{2}+\vec{N}_{2} \cdot \vec{T}_{1}\right)+\tau\left(\vec{N}_{1} \cdot \vec{B}_{2}+\vec{N}_{2} \cdot \vec{B}_{1}\right)-\tau\left(\vec{B}_{1} \cdot \vec{N}_{2}+\vec{B}_{2} \cdot \vec{N}_{1}\right)\right)= \\
& =0
\end{aligned}
$$

Since the derivative with respect to s is zero, the quantity above is constant as a function of s.
(b) At $s=a$ the quantity above is equal to zero. But because it constant as a function of s, it must be constant equal to zero. It follows that for all s, we have $\vec{T}_{1}(s)=\vec{T}_{2}(s)$ (and also $\vec{N}_{1}(s)=\vec{N}_{2}(s)$ and $\left.\vec{B}_{1}(s)=\vec{B}_{2}(s)\right)$. Since we can get the position vectors of the paths $\vec{r}_{i}(i=1,2)$ by integrating the velocity vector $\vec{T}_{i}(s)$, they must coincide:

$$
\vec{r}_{1}(s)=\vec{r}_{1}(a)+\int_{a}^{s} \vec{T}_{1}(t) d t=\vec{r}_{2}(a)+\int_{a}^{s} \vec{T}_{2}(t) d t=\vec{r}_{2}(s) .
$$

(9) (a) We simply have to show that $\|\vec{r}(s)\|=1$:

$$
\left\|\vec{r}^{\prime}(s)\right\|=\sqrt{\left(-\frac{a}{c} \sin (s / c)\right)^{2}+\left(\frac{a}{c} \cos (s / c)\right)^{2}+\left(\frac{b}{c}\right)^{2}}=\sqrt{\frac{a^{2}+b^{2}}{c^{2}}}=1
$$

(b)

$$
\begin{gathered}
\vec{T}(s)=\vec{r}^{\prime}(s)=\left(-\frac{a}{c} \sin (s / c), \frac{a}{c} \cos (s / c), \frac{b}{c}\right) \\
\vec{N}(s)=\frac{d \vec{T}(s) / d s}{\|d \vec{T}(s) / d s\|}=\frac{\left(-\frac{a}{c^{2}} \cos (s / c),-\frac{a}{c^{2}} \sin (s / c), 0\right)}{\frac{a}{c^{2}}}=(-\cos (s / c),-\sin (s / c), 0) \\
\vec{B}(s)=\vec{T}(s) \times \vec{N}(s)=\left|\begin{array}{ccc}
i & j & k \\
-\frac{a}{c} \sin (s / c) & \frac{a}{c} \cos (s / c) & \frac{b}{c} \\
-\cos (s / c) & -\sin (s / c) & 0
\end{array}\right|=\left(\frac{b}{c} \sin (s / c),-\frac{b}{c} \cos (s / c), \frac{a}{c}\right)
\end{gathered}
$$

(c)

$$
\begin{gathered}
\kappa(s)=\left\|\frac{d \vec{T}(s)}{d s}\right\|=\frac{a}{c^{2}} \\
\frac{d \vec{B}(s)}{d s}=-\tau(s) \vec{N}(s) \\
\Longleftrightarrow\left(\frac{b}{c^{2}} \cos (s / c), \frac{b}{c^{2}} \sin (s / c), 0\right)=-\tau(s)(-\cos (s / c),-\sin (s / c), 0) \\
\Longleftrightarrow \tau(s)=\frac{b}{c^{2}}
\end{gathered}
$$

(10) The helix in Problem 9 above has constant curvature and torsion, and by Theorem 2.5, any curve with constant curvature and torsion is congruent to such a helix. To find out which helix we solve for a, b and c the following equations:

$$
\kappa=\frac{a}{c^{2}} \quad, \quad \tau=\frac{b}{c^{2}} \quad, \quad a^{2}+b^{2}=c^{2}
$$

Writing $\kappa^{2}+\tau^{2}=\frac{a^{2}}{c^{4}}+\frac{b^{2}}{c^{4}}=\frac{1}{c^{2}}$, we conclude that

$$
a=\frac{\kappa}{\kappa^{2}+\tau^{2}} \quad, \quad b=\frac{\tau}{\kappa^{2}+\tau^{2}} \quad, \quad c=\frac{1}{\sqrt{\kappa^{2}+\tau^{2}}} .
$$

(11) (a) The vectors $\vec{T}(a), \vec{N}(a)$ and $\vec{B}(a)$ are mutually orthogonal and all have length 1 , so we must have

$$
\vec{N}(a)=\vec{B}(a) \times \vec{T}(a)=\left(\frac{-1}{3}, \frac{2}{3}, \frac{2}{3}\right) \times\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)=\left(\frac{-2}{3}, \frac{1}{3}, \frac{-2}{3}\right) .
$$

(b) Dotting with $\vec{T}(s)$ on both sides of the Frenet-Serret formula

$$
\frac{d \vec{N}(s)}{d s}=-\kappa(s) \vec{T}(s)+\tau(s) \vec{B}(s)
$$

we obtain $\frac{d \vec{N}(s)}{d s} \cdot \vec{T}(s)=-\kappa(s)$, and so $\kappa(a)=-(-4,2,5) \cdot\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)=3$.
(c) Dotting with $\vec{B}(s)$ on both sides of the Frenet-Serret formula

$$
\frac{d \vec{N}(s)}{d s}=-\kappa(s) \vec{T}(s)+\tau(s) \vec{B}(s)
$$

we obtain $\frac{d \vec{N}(s)}{d s} \cdot \vec{B}(s)=\tau(s)$, and so $\tau(a)=(-4,2,5) \cdot\left(\frac{-1}{3}, \frac{2}{3}, \frac{2}{3}\right)=6$.

