MODEL ANSWERS TO HWK \#4
 (18.022 FALL 2010)

(1) (i) f is nowhere continuous. Let $\epsilon=\frac{1}{2}$. If x is rational, since irrational numbers are dense in reals, for any $\delta>0$ there is irrational y such that $|y-x|<\delta$, and $|f(y)-f(x)|=1>\epsilon$. Therefore f is not continuous at x. If x is irrational, similarly from that rational numbers are dense in reals, for any $\delta>0$ there is rational y such that $|y-x|<\delta$, and $|f(y)-f(x)|=1>\epsilon$. Therefore f is not continuous at x.
(ii) f is continuous only at $x=0$. If $x \neq 0$, then let $\epsilon=\frac{|x|}{2}$. Now by the same argument as in (i), for any $\delta>0$ there is y such that $|f(y)-f(x)|=|x|>\epsilon$. Therefore f is not continuous at $x \neq 0$. If $x=0$, then for any $\epsilon>0,|f(y)-f(x)|=|f(y)|<\epsilon$ for y such that $|y-x|=|y|<\frac{\epsilon}{2}$. Therefore f is continuous at $x=0$.
(2) (i) If f is continuous at x then $\forall \epsilon>0, \exists \delta>0$ such that $\forall\|y-x\|<\delta,\|f(y)-f(x)\|<\epsilon$. Since $\|f(y)-f(x)\|=\sqrt{\left(f_{1}(y)-f_{1}(x)\right)^{2}+\cdots+\left(f_{m}(y)-f_{m}(x)\right)^{2}}>\left|f_{i}(y)-f_{i}(x)\right|$ for all $i=1, \ldots, m, f_{i}$ is also continuous at x for all i.
(ii) If f_{i} 's are all continuous at x, then $\forall \epsilon>0$ and $\forall i=1, \ldots, m, \exists \delta_{i}>0$ such that $\forall\|y-x\|<\delta_{i},\left|f_{i}(y)-f_{i}(x)\right|<\frac{\epsilon}{\sqrt{m}}$. Let $\delta=\min \left(\delta_{1}, \ldots, \delta_{n}\right)$. We get $\forall\|y-x\|<$ $\delta,\|f(y)-f(x)\|=\sqrt{\left(f_{1}(y)-f_{1}(x)\right)^{2}+\cdots+\left(f_{m}(y)-f_{m}(x)\right)^{2}}<\epsilon$. Therefore f is continuous at x.
(3) (a) By definition,

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0, \\
f_{y}(0,0) & =\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0
\end{aligned}
$$

Therefore both partial derivatives exist at $(0,0)$. Now

$$
h(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y=0
$$

Hence,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(0,0)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{|x y|}{\sqrt{x^{2}+y^{2}}}=\lim _{r \rightarrow 0} \frac{r^{2}|\sin \theta \cos \theta|}{r}=0
$$

and $f(x, y)$ is differentiable at $(0,0)$.
(b) By the symmetry between x and y, it's enough to prove the claim for $f_{x}(x, y)$. We have,

$$
f_{x}(a, b)=|b| \lim _{h \rightarrow 0} \frac{|a+h|-|a|}{h}= \begin{cases}|b|, & a>0 \\ -|b|, & a<0\end{cases}
$$

So f_{x} is not continuous at $(0, b)$ if $|b|>0$. For any neighborhood of the origin, we can choose such point $(0, b)$, hence f_{x} is not continuous in any neighborhood of the origin.
(4) Viewing f_{y} as a function of y, it's easy to find a function g such that $g_{y}=f_{y}$, namely

$$
g(x, y)=x^{3} y^{2}+x \cos (x y)+y^{3}
$$

Now let $f(x, y)=g(x, y)+h(x)=x^{3} y^{2}+x \cos (x y)+y^{3}+h(x)$. We get

$$
3 x^{2} y^{2}-x y \sin (x y)+\cos (x y)=f_{x}(x, y)=3 x^{2} y^{2}+\cos (x y)-x y \sin (x y)+h^{\prime}(x)
$$

Therefore $h^{\prime}(x)=0$ and $h(x)$ must be a constant. So $f(x, y)=x^{3} y^{2}+x \cos (x y)+y^{3}+C$ for some constant C will do.
(5) $(2.3 .21) D \mathbf{f}(x, y, z)=\left(\begin{array}{ccc}y z & x z & x y \\ \frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} & \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\end{array}\right)$, therefore $D \mathbf{f}(\mathbf{a})$ is $\left(\begin{array}{ccc}0 & -2 & 0 \\ \frac{1}{\sqrt{5}} & 0 & \frac{-2}{\sqrt{5}}\end{array}\right)$
(6) (2.3.25) $D \mathbf{f}(s, t)=\left(\begin{array}{cc}2 s & 0 \\ t & s \\ 0 & 2 t\end{array}\right)$, therefore $D \mathbf{f}(\mathbf{a})$ is $\left(\begin{array}{cc}-2 & 0 \\ 1 & -1 \\ 0 & 2\end{array}\right)$
(7) (2.3.30) The plane is perpendicular to the gradient vector of $f(x, y, z)=z-4 \cos (x y)$ at $\left(\frac{\pi}{3}, 1,2\right)$, which is $\left(2 \sqrt{3}, \frac{2 \sqrt{3} \pi}{3}, 1\right)$, and passes through the point $\left(\frac{\pi}{3}, 1,2\right)$. Hence the equation of the plane is $\left(2 \sqrt{3}, \frac{2 \sqrt{3} \pi}{3}, 1\right) \cdot\left(x-\frac{\pi}{3}, y-1, z-2\right)=0$. Rewriting it, we get $2 \sqrt{3} x+\frac{2 \sqrt{3} \pi}{3} y+z=$ $2+\frac{4 \sqrt{3} \pi}{3}$.
(8) (2.3.31) The plane is perpendicular to the gradient vector of $f(x, y, z)=z-\exp x+y \cos (x y)$ at $(0,1, e)$, which is $(-e,-e, 1)$, and passes through the point $(0,1, e)$. Hence the equation of the plane is $(-e,-e, 1) \cdot(x, y-1, z-e)=0$. Rewriting it, we get $e x+e y-z=0$.
(9) $(2.3 .33) x_{5}=-8+(-2) \times 2\left(x_{1}-2\right)+(-6) \times(-1)\left(x_{2}+1\right)+(-4) \times 1\left(x_{3}-1\right)+(-2) \times 3\left(x_{4}-3\right)=$ $-4 x_{1}+6 x_{2}-4 x_{3}-6 x_{4}+28$.

$$
\begin{gather*}
\text { (2.3.51) Let } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) . \text { Then } \mathbf{f}(\mathbf{x})=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right) . \text { Hence, } \tag{10}\\
D \mathbf{f}(\mathbf{x})=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=A
\end{gather*}
$$

This agrees with the fact that the derivative of $f(x)=a x$ is the slope a, when A is 1×1 matrix.

