
MODEL ANSWERS TO HWK #4
(18.022 FALL 2010)

(1) (i) f is nowhere continuous. Let ε = 1
2
. If x is rational, since irrational numbers are dense in

reals, for any δ > 0 there is irrational y such that |y−x| < δ, and |f(y)−f(x)| = 1 > ε.
Therefore f is not continuous at x. If x is irrational, similarly from that rational
numbers are dense in reals, for any δ > 0 there is rational y such that |y − x| < δ, and
|f(y)− f(x)| = 1 > ε. Therefore f is not continuous at x.

(ii) f is continuous only at x = 0. If x 6= 0, then let ε = |x|
2

. Now by the same argument
as in (i), for any δ > 0 there is y such that |f(y)− f(x)| = |x| > ε. Therefore f is not
continuous at x 6= 0. If x = 0, then for any ε > 0, |f(y)− f(x)| = |f(y)| < ε for y such
that |y − x| = |y| < ε

2
. Therefore f is continuous at x = 0.

(2) (i) If f is continuous at x then ∀ε > 0, ∃δ > 0 such that ∀||y− x|| < δ, ||f(y)− f(x)|| < ε.

Since ||f(y)− f(x)|| =
√

(f1(y)− f1(x))2 + · · ·+ (fm(y)− fm(x))2 > |fi(y)− fi(x)| for
all i = 1, . . . ,m, fi is also continuous at x for all i.

(ii) If fi’s are all continuous at x, then ∀ε > 0 and ∀i = 1, . . . ,m, ∃δi > 0 such that
∀||y − x|| < δi, |fi(y) − fi(x)| < ε√

m
. Let δ = min (δ1, . . . , δn). We get ∀||y − x|| <

δ, ||f(y) − f(x)|| =
√

(f1(y)− f1(x))2 + · · ·+ (fm(y)− fm(x))2 < ε. Therefore f is
continuous at x.

(3) (a) By definition,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 0,

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= 0

Therefore both partial derivatives exist at (0,0). Now

h(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y = 0

Hence,

lim
(x,y)→(0,0)

f(x, y)− h(x, y)

||(x, y)− (0, 0)||
= lim

(x,y)→(0,0)

|xy|√
x2 + y2

= lim
r→0

r2| sin θ cos θ|
r

= 0,

and f(x, y) is differentiable at (0, 0).
(b) By the symmetry between x and y, it’s enough to prove the claim for fx(x, y). We have,

fx(a, b) = |b| lim
h→0

|a+ h| − |a|
h

=

{
|b|, a > 0

−|b|, a < 0

So fx is not continuous at (0, b) if |b| > 0. For any neighborhood of the origin, we can
choose such point (0, b), hence fx is not continuous in any neighborhood of the origin.
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(4) Viewing fy as a function of y, it’s easy to find a function g such that gy = fy, namely

g(x, y) = x3y2 + x cos (xy) + y3

Now let f(x, y) = g(x, y) + h(x) = x3y2 + x cos (xy) + y3 + h(x). We get

3x2y2 − xy sin (xy) + cos (xy) = fx(x, y) = 3x2y2 + cos (xy)− xy sin (xy) + h′(x)

Therefore h′(x) = 0 and h(x) must be a constant. So f(x, y) = x3y2 + x cos (xy) + y3 + C
for some constant C will do.

(5) (2.3.21)Df(x, y, z) =

(
yz xz xy
x√

x2+y2+z2
y√

x2+y2+z2
z√

x2+y2+z2

)
, thereforeDf(a) is

(
0 −2 0
1√
5

0 −2√
5

)

(6) (2.3.25) Df(s, t) =

 2s 0
t s
0 2t

, therefore Df(a) is

 −2 0
1 −1
0 2


(7) (2.3.30) The plane is perpendicular to the gradient vector of f(x, y, z) = z − 4 cos (xy) at

(π
3
, 1, 2), which is (2

√
3, 2
√
3π
3
, 1), and passes through the point (π

3
, 1, 2). Hence the equation

of the plane is (2
√

3, 2
√
3π
3
, 1)·(x− π

3
, y−1, z−2) = 0. Rewriting it, we get 2

√
3x+ 2

√
3π
3
y+z =

2 + 4
√
3π
3

.
(8) (2.3.31) The plane is perpendicular to the gradient vector of f(x, y, z) = z−expx+ y cos (xy)

at (0, 1, e), which is (−e,−e, 1), and passes through the point (0, 1, e). Hence the equation
of the plane is (−e,−e, 1) · (x, y − 1, z − e) = 0. Rewriting it, we get ex+ ey − z = 0.

(9) (2.3.33) x5 = −8+(−2)×2(x1−2)+(−6)×(−1)(x2+1)+(−4)×1(x3−1)+(−2)×3(x4−3) =
−4x1 + 6x2 − 4x3 − 6x4 + 28.

(10) (2.3.51) LetA =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

. Then f(x) =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

. Hence,

Df(x) =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 = A

This agrees with the fact that the derivative of f(x) = ax is the slope a, when A is 1× 1
matrix.


