MODEL ANSWERS TO HWK \#3
 (18.022 FALL 2010)

(1) In cartesian coordinates D is the region

$$
\left\{\begin{array}{l}
(x-a)^{2}+(y-a)^{2} \leq a^{2} \\
-1 \leq z \leq 3
\end{array}\right.
$$

This translates to the cylindrical coordinates

$$
\left\{\begin{array}{l}
r^{2}-2 a r(\cos \theta+\sin \theta) \leq a^{2} \\
-1 \leq z \leq 3
\end{array}\right.
$$

(2) The region D is

$$
\left\{\begin{array}{l}
\rho \leq 2 a \\
-a \leq \rho \sin \phi \cos \theta \leq a
\end{array}\right.
$$

(3) (i) True. For any $c \in C$ there exists $b \in B$ such that $g(b)=c$, since g is surjective. Since f is surjective there exists $a \in A$ such that $f(a)=b$ and hence $(g \circ f)(a)=c$. It follows that $g \circ f$ is surjective.
(ii) False. Consider the counter example given by the domains $A=\{1\}, B=\{0,1\}$ and $C=\{1\}$ and the functions f, g defined by $f(1)=1$ and $g(0)=g(1)=1$. Then $g \circ f: A \rightarrow C$ is surjective (since $g(f(1))=1$), but f is not surjective since $0 \in B$ has no preimage.
(iii) True. For any $c \in C$ there exists $a \in A$ such that $g(f(a))=c$ since $g \circ f$ is surjective. Since $f(a) \in B$ we learn that g is surjective.
(4) We take f to be

$$
f(x)= \begin{cases}c, & x \in S \\ c-1, & x \notin S\end{cases}
$$

(5) (2.1.34)
(a) We take F to be

$$
F(x, y, z)= \begin{cases}1, & x^{2}+x y-x z=2 \\ 0, & x^{2}+x y-x z \neq 2\end{cases}
$$

(b) We take f to be

$$
f(x, y)=\frac{x^{2}+x y-2}{x},
$$

defined for any (x, y) such that $x \neq 0$.
(6) (2.2.9) The limit does not exist. Along the line $y=-x$ the limit is 0 and along the line $y=x$ the limit is 2.
(7) (2.2.11) The limit does not exist. Along the line $y=0$ the limit is 2 and along the line $x=0$ the limit is 1 .
(8) (2.2.13) The limit exists and is 0 .

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 x y+y^{2}}{x+y}=\lim _{(x, y) \rightarrow(0,0)} \frac{(x+y)^{2}}{x+y}=\lim _{(x, y) \rightarrow(0,0)} x+y=0 .
$$

(9) (2.2.15) The limit exists and is 0 .

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} x^{2}-y^{2}=0 .
$$

(10) (2.2.31)

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}=\lim _{\rho \rightarrow 0} \frac{\rho^{3} \sin ^{2} \phi \cos \theta \sin \theta \cos \phi}{\rho^{2}}=0 .
$$

(11) (2.2.35) The function is continuous because it is a polynomial.
(12) (2.2.42) The function g is clearly continuous at any point $(x, y) \neq(0,0)$. So for g to continuous c must be the limit $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$. We compute
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+x y^{2}+2 x^{2}+2 y^{2}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+x y^{2}}{x^{2}+y^{2}}+2=\lim _{r \rightarrow 0} \frac{r^{3}\left(\cos ^{3} \theta+\cos \theta \sin ^{2} \theta\right)}{r^{2}}+2=2$,
so $c=2$ is the value that makes g continuous.

