MODEL ANSWERS TO HWK \#2
 (18.022 FALL 2010)

(1) (1.3.27)
(a) First let us fix a labeling for the points: W_{1}, W_{2} and W_{3} are the centers of what we will call the circles 1,2 and 3 , respectively, O is the point where all three circles intersect, and A, B and C are the points of pairwise intersections: circles 2 and 3 intersect at point A, circles 1 and 3 intersect at point B and circles 1 and 2 intersect at point C. Then,

$$
\begin{aligned}
& \mathrm{a}=\mathrm{w}_{2}+\mathrm{w}_{3} \\
& \mathrm{~b}=\mathrm{w}_{1}+\mathrm{w}_{3} \\
& \mathrm{c}=\mathrm{w}_{\mathbf{1}}+\mathrm{w}_{\mathbf{2}} .
\end{aligned}
$$

(b) In order to show that A, B and C lie on a circle of radius r, we have to show that $\|\overrightarrow{A P}\|=\|\overrightarrow{B P}\|=\|\overrightarrow{C P}\|=r$, where P is the center of the circle (and as noted in the textbook, $\overrightarrow{O P}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}+\mathbf{w}_{\mathbf{3}}$):

$$
\begin{aligned}
& \overrightarrow{A P}=\overrightarrow{A O}+\overrightarrow{O P}=-\mathbf{a}+\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}+\mathbf{w}_{\mathbf{3}}=\mathbf{w}_{\mathbf{1}} \\
& \overrightarrow{B P}=\overrightarrow{B O}+\overrightarrow{O P}=-\mathbf{b}+\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}+\mathbf{w}_{\mathbf{3}}=\mathbf{w}_{\mathbf{2}} \\
& \overrightarrow{C P}=\overrightarrow{C O}+\overrightarrow{O P}=-\mathbf{c}+\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}+\mathbf{w}_{\mathbf{3}}=\mathbf{w}_{\mathbf{3}}
\end{aligned}
$$

Since $\left\|\mathbf{w}_{\mathbf{1}}\right\|=\left\|\mathbf{w}_{\mathbf{2}}\right\|=\left\|\mathbf{w}_{\mathbf{3}}\right\|=r$, we are done.
(c) In order to show that O is the common intersection point of the altitudes perpendicular to the edges, it is enough to show that $\overrightarrow{A B} \perp \overrightarrow{O C}, \overrightarrow{B C} \perp \overrightarrow{O A}$ and $\overrightarrow{C A} \perp \overrightarrow{O B}$:

$$
\overrightarrow{A B} \cdot \overrightarrow{O C}=(\overrightarrow{A O}+\overrightarrow{O B}) \cdot \mathbf{c}=(-\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\left(\mathbf{w}_{\mathbf{1}}-\mathbf{w}_{\mathbf{2}}\right) \cdot\left(\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}\right)=0
$$

The other two are similar to this one, so I won't write them out.
(2) The triple $\mathbf{u}=(1,-1,2), \mathbf{v}=(2,1,1), \mathbf{w}=(0,2,-1)$ is a right-hand triple because

$$
\left|\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
0 & 2 & -1
\end{array}\right|=3,
$$

which is positive.
(3) (a) Write $\mathbf{v}=(\|\mathbf{v}\| \cos \alpha,\|\mathbf{v}\| \sin \alpha)=\|\mathbf{v}\|(\cos \alpha, \sin \alpha)$ and let us compute $\mathbf{w}=A(\theta) \mathbf{v}$:

$$
\begin{aligned}
\mathbf{w} & =\|\mathbf{v}\|\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right] \\
& =\|\mathbf{v}\|\left[\begin{array}{c}
\cos \theta \cos \alpha+\sin \theta \sin \alpha \\
-\sin \theta \cos \alpha+\cos \theta \sin \alpha
\end{array}\right] \\
& =\|\mathbf{v}\|\left[\begin{array}{c}
\cos (\alpha-\theta) \\
\sin (\alpha-\theta)
\end{array}\right] .
\end{aligned}
$$

Thus $\mathbf{w}=(\|\mathbf{v}\| \cos (\alpha-\theta),\|\mathbf{v}\| \sin (\alpha-\theta))$, which is exactly the vector \mathbf{v} rotated clockwise around the origin by an angle of θ. Hence, multiplying on the left by $A(\theta)$ corresponds to rotating clockwise around the origin by θ.
(b)

$$
\begin{aligned}
B C & =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta \cos \phi-\sin \theta \sin \phi & \cos \theta \sin \phi+\sin \theta \cos \phi \\
-\sin \theta \cos \phi-\cos \theta \sin \phi & -\sin \theta+\cos \theta \cos \phi
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\theta+\phi) & \sin (\theta+\phi) \\
-\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right]
\end{aligned}
$$

(c) Applying $B C$ to a vector \mathbf{v} (to get $B C \mathbf{v}$) is the same as first applying C to \mathbf{v} and then B to $C \mathbf{v}$. But this corresponds exactly to rotating \mathbf{v} clockwise around the origin by ϕ and then by θ, which is the same as rotating by $\theta+\phi$.
(4) (1.4.6)

$$
(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \times(\mathbf{i}+\mathbf{j}+\mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -2 & 1 \\
1 & 1 & 1
\end{array}\right|=-3 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}
$$

(5) (1.4.11)

Note that $\overrightarrow{A B}=\overrightarrow{C D}=(3,-4,-2)$ and $\overrightarrow{A C}=\overrightarrow{B D}=(-4,-1,-3)$, so the parallelogram is $A B D C$, and its area is

$$
\|(3,-4,-2) \times(-4,-1,-3)\|=\left\|\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -4 & -2 \\
-4 & -1 & -3
\end{array}\right]\right\|=\|(10,17,-19)\|=5 \sqrt{30} .
$$

(6) (1.4.18)

To find the volume of the parallelepiped we use the triple scalar product:

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=((3,-1,0) \times(-2,0,1)) \cdot(1,-2,4)=(-1,-3,-2) \cdot(1,-2,4)=-3 .
$$

The volume of the parallelepiped is 3 .
(7) (1.4.26)

> (a),(f),(h) are vectors; (d),(g) are scalars; (b),(c),(e) do not make sense.
(8) (1.5.7)

A plane in \mathbb{R}^{3} is determined uniquely by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the plane and a vector \mathbf{n} perpendicular to the plane. In this case a point $P_{0}=(1,-1,2)$ is given, and \mathbf{n} must be parallel to the prescribed line, so take $\mathbf{n}=(3,-2,-1)$.

Then the equation for the plane is

$$
\begin{gathered}
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0 \\
\Longleftrightarrow(3,-2,-1) \cdot(x-1, y+1, z-2)=0 \\
\Longleftrightarrow 3(x-1)-2(y+1)-(z-2)=0 \\
\Longleftrightarrow 3 x-2 y-z=3 .
\end{gathered}
$$

(9) (1.5.8)

A plane in \mathbb{R}^{3} is determined uniquely by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the plane and a vector n perpendicular to the plane.

- Finding P_{0} : Any point on the line l_{1} or on the line l_{2} works. For example, setting $t=0$ on the equation for l_{1}, we get $P_{0}=(2,-5,1)$.
- Finding \mathbf{n} : The vector \mathbf{n} must be perpendicular to the vectors $(1,3,5)$ and $(-1,3,-2)$ (vectors parallel to l_{1} and l_{2} respectively), so we can take it to be their cross product:

$$
\mathbf{n}=(1,3,5) \times(-1,3,-2)=(-21,-3,6)
$$

Then the equation for the plane is

$$
\begin{gathered}
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0 \\
\Longleftrightarrow(-21,-3,6) \cdot(x-2, y+5, z-1)=0 \\
\Longleftrightarrow-21(x-2)-3(y+5)+6(z-1)=0 \\
\Longleftrightarrow 7 x+y-2 z=7 .
\end{gathered}
$$

(10) (1.5.9)

A plane is determined uniquely by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line and a vector \mathbf{v} parallel to the line.

- Finding P_{0} : The point P_{0} must be in both planes, and hence satisfy both $x+2 y-3 z=5$ and $5 x+5 y-z=1$. If we chose to set $z_{0}=0$ we must then have $x_{0}+2 y_{0}=5$ and $5 x_{0}+5 y_{0}=1$, which yields $P_{0}=\left(-\frac{23}{5}, \frac{24}{5}, 0\right)$.
- Finding \mathbf{v} : The vector \mathbf{v} must be perpendicular to the vectors $(1,2,-3)$ and $(5,5,-1)$ (vectors normal to each of the planes given), so we can take it to be their cross product:

$$
\mathbf{n}=(1,2,-3) \times(5,5,-1)=(13,-14,-5) .
$$

Then the equation for the line is $(x, y, z)=P_{0}+t \mathbf{v}$:

$$
\left\{\begin{array}{l}
x=-\frac{23}{5}+13 t \tag{11}\\
y=\frac{24}{5}-14 t \\
z=-5 t
\end{array}\right.
$$

Two planes Π_{1} and Π_{2} are perpendicular if and only if their normal vectors \mathbf{n}_{1} and \mathbf{n}_{2} are perpendicular, i.e., if $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=0$. In this case, $\mathbf{n}_{1}=(A,-1,1)$ and $\mathbf{n}_{2}=(3 A, A,-2)$:

$$
(A,-1,1) \cdot(3 A, A,-2)=3 A^{2}-A-2=0 \Longleftrightarrow A=1 \text { or } A=-\frac{2}{3}
$$

(12) (1.5.20)

In order to find the distance D between $P_{0}=(1,-2,3)$ and the line l we need an auxiliary point B on the line l; take for example $B=(-5,3,4)$ (obtained by setting $t=0$ on the equations for $l)$. Then $D=\left\|B \vec{P}_{0}-\operatorname{proj}_{\mathbf{v}} \overrightarrow{B P_{0}}\right\|$, where $\mathbf{v}=(2,-1,0)$ is a vector parallel to the line l :

$$
D=\left\|(6,-5,-1)-\frac{(2,-1,0) \cdot(6,-5,-1)}{(2,-1,0) \cdot(2,-1,0)}(2,-1,0)\right\|=\left\|\left(-\frac{4}{5},-\frac{8}{5},-1\right)\right\|=\sqrt{\frac{21}{5}} .
$$

(13) (1.5.24)

In order to find the distance D between the lines l_{1} and l_{2} we need two auxiliary points B_{1} and B_{2}, on l_{1} and l_{2} respectively. We can take $B_{1}=(-7,1,3)$ and $B_{2}=(0,2,1)$ (obtained by setting $t=0$ on the equations for l_{1} and l_{2}). Now, $D=\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{B_{1} B_{2}}\right\|$, where \mathbf{n} is a vector perpendicular to both lines (and hence perpendicular to the planes Π_{1} and Π_{2} parallel to each other and that contain the lines l_{1} and l_{2} respectively. Figure 1.79 in page 45 of the textbook is helpful in understanding this argument):

- Finding \mathbf{n} : Take $\mathbf{v}_{\mathbf{1}}=(1,5,-2)$ and $\mathbf{v}_{\mathbf{2}}=(4,-1,8)$ vectors parallel to the lines l_{1} and l_{2} respectively. Then we can take $\mathbf{n}=(1,5,-2) \times(4,-1,8)=(38,-16,-21)$.
Then,

$$
\begin{equation*}
D=\left\|\frac{\mathbf{n} \cdot B_{1} B_{2}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}\right\|=\left\|\left(\frac{11096}{2141},-\frac{4672}{2141},-\frac{6132}{2141}\right)\right\|=\frac{292}{\sqrt{2141}} . \tag{14}
\end{equation*}
$$

In order to find the distance D between the planes Π_{1} and Π_{2} we need two auxiliary points B_{1} and B_{2}, on Π_{1} and Π_{2} respectively. We can take $P_{1}=(0,0,6)$ and $B_{2}=(0,0,-2)$. Now, $D=\left\|\operatorname{proj}_{\mathbf{n}} \vec{P}_{1} P_{2}\right\|$, where \mathbf{n} is a vector perpendicular to both planes (Π_{1} and Π_{2} are parallel!), so take $\mathbf{n}=(5,-2,2)($ note that $(-10,4,-4)=-2(5,-2,2))$. Then:

$$
D=\left\|\frac{\mathbf{n} \cdot \overrightarrow{P_{1} p_{2}}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}\right\|=\left\|\left(\frac{80}{33},-\frac{32}{33}, \frac{32}{33}\right)\right\|=\frac{16}{\sqrt{33}} .
$$

(15) (1.6.9)

$$
\|\mathbf{a}-\mathbf{b}\|=\|(\mathbf{a}-\mathbf{c})+(\mathbf{c}-\mathbf{b})\| \leq\|(\mathbf{a}-\mathbf{c})\|+\|(\mathbf{c}-\mathbf{b})\| .
$$

In the last step we used the triangle inequality.
(16) (1.6.11)

Assume that $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}-\mathbf{b}\|$. Then:

$$
\begin{gathered}
\|\mathbf{a}+\mathbf{b}\|^{2}=\|\mathbf{a}-\mathbf{b}\|^{2} \\
\Longleftrightarrow(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
\Longleftrightarrow \mathbf{a} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b} \\
\Longleftrightarrow 2 \mathbf{a} \cdot \mathbf{b}=-2 \mathbf{a} \cdot \mathbf{b} \\
\Longleftrightarrow \mathbf{a} \cdot \mathbf{b}=0 \\
\Longleftrightarrow \mathbf{a} \perp \mathbf{b} .
\end{gathered}
$$

(17) (1.6.14)

Half of my inventory is worth $10 \times \$ 8+15 \times \$ 10+12 \times \$ 12+10 \times \$ 15=\$ 524$.
Half of my friend's inventory is worth $15 \times \$ 10+8 \times \$ 10+10 \times \$ 12+14 \times \$ 15=\$ 560$. My friend is not likely to accept my offer, because he would lose the equivalent of $\$ 36$.
(18) (1.6.21)

We expand the first row:

$$
\begin{aligned}
\left|\begin{array}{cccc}
7 & 0 & -1 & 0 \\
2 & 0 & 1 & 3 \\
1 & -3 & 0 & 2 \\
0 & 5 & 1 & -2
\end{array}\right| & =(-1)^{1+1}(7)\left|\begin{array}{ccc}
0 & 1 & 3 \\
-3 & 0 & 2 \\
5 & 1 & -2
\end{array}\right|+(-1)^{1+3}(-1)\left|\begin{array}{ccc}
2 & 0 & 3 \\
1 & -3 & 2 \\
0 & 5 & -2
\end{array}\right| \\
& =(7)(-5)+(-1)(7) \\
& =-42
\end{aligned}
$$

