MODEL ANSWERS TO HWK \#11
 (18.022 FALL 2010)

(1) (6.1.1)
(a) $x^{\prime}=(-3,4)$ so $\left\|x^{\prime}\right\|=5$, hence

$$
\int_{x} f d s=5 \int_{0}^{2}(2-3 t+8 t-2) d t=50 .
$$

(b) $x^{\prime}=(-\sin t, \cos t)$ so $\left\|x^{\prime}\right\|=1$, hence

$$
\int_{x} f d s=\int_{0}^{\pi}(\cos t+2 \sin t)=4
$$

(2) (6.1.3) $x^{\prime}=(1,1,3 \sqrt{t} / 2)$ so $\left\|x^{\prime}\right\|=\sqrt{2+9 t / 4}$, hence

$$
\int_{x} f d s=\int_{1}^{3} \frac{t+t^{3 / 2}}{t+t^{3 / 2}} \sqrt{2+9 t / 4} d t
$$

We perform the substitution $t=\frac{4}{9}(u-2)$ and get that this equals

$$
\int_{17 / 4}^{35 / 4} 4 \sqrt{u} / 9 d u=\frac{1}{27}\left[17^{3 / 2}-35^{3 / 2}\right] .
$$

(3) $(6.1 .7) x^{\prime}=(\cos t, \sin t)$, hence

$$
\int_{x} F \cdot d s=\int_{0}^{\pi / 2}\left[(-\cos t+2) \cos t+\sin ^{2} t\right] d t
$$

It easy to see by change of variable that $\int_{0}^{\pi / 2} \sin ^{2} t=\int_{0}^{p i / 2} \cos ^{2} t$ and so the above intergal equals

$$
\int_{0}^{\pi / 2} 2 \cos t d t=2
$$

(4) (6.1.11) $x^{\prime}=(-3 \sin 3 t, 3 \cos 3 t)$, hence

$$
\int_{x} x d y-y d x=\int_{0}^{\pi} 3 \cos ^{2} 3 t+3 \sin ^{2} 3 t=3 \pi
$$

(5) (6.1.13) $x^{\prime}=\left(2 e^{2 t} \cos 3 t-3 e^{2 t} \sin 3 t, 2 e^{2 t} \sin 3 t+3 e^{2 t} \cos 3 t\right)$, hence

$$
\int_{x} \frac{x d x+y d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\int_{0}^{2 \pi} \frac{2 e^{4 t}}{e^{6 t}}=1-e^{-4 \pi}
$$

(6) (6.1.16) A parametrization of the curve (there is more than one) is $x(t)=(t, 5-4 t, 2 t-1)$ for $1 \leq t \leq 2$. We have $x^{\prime}=(1,-4,2)$, hence the work is

$$
\int_{1}^{2}\left[t^{2}(5-4 t)-4(2 t-1)+2(6 t-5)\right] d t=\int_{1}^{2}\left[-4 t^{3}+5 t^{2}+4 t-6\right] d t=-3 \frac{1}{3}
$$

(7) (6.1.19) Parameterize C by a curve x defined by

$$
x(t)= \begin{cases}(t, t) & 0 \leq t \leq 1 \\ (t, 1) & 1 \leq t \leq 3 \\ (3,4-t) & 3 \leq t \leq 4 \\ (7-t, 0) & 4 \leq t \leq 7\end{cases}
$$

Note that this curve have clockwise orientation, so we will remember to take -1 to whatever we get in the integral. We have

$$
d x= \begin{cases}1 & 0 \leq t \leq 3 \\ 0 & 3 \leq t \leq 4 \\ -1 & 4 \leq t \leq 7\end{cases}
$$

and

$$
d y= \begin{cases}1 & 0 \leq t \leq 1 \\ 0 & 1 \leq t \leq 3 \\ -1 & 3 \leq t \leq 4 \\ 0 & 4 \leq t \leq 7\end{cases}
$$

Thus

$$
\int_{C} x^{2} y d x-(x+y) d y=-\int_{0}^{1} t^{3} d t-\int_{1}^{3} t^{2} d t+\int_{0}^{1} 2 t d t-\int_{3}^{4}(7-t) d t=-\frac{137}{12}
$$

(8) (6.1.21) A parametrization of the curve is $x(t)=(1+4 t, 1+2 t, 2-t)$ for $0 \leq t \leq 1$, so $x^{\prime}=(4,2,-1)$. Hence
$\int_{C} y z d x-x y d y+x y d z=\int_{0}^{1}[4(1+2 t)(2-t)-2(1+4 t)(2-t)-(1+4 t)(1+2 t)] d t=-\frac{11}{3}$.
(9) (6.2.8) Let D be the ellipse. We have $N_{x}=1, M_{y}=-4$, so by Green's theorem the work equals

$$
\iint_{D}-3 d x d y=-12 \pi
$$

(10) (6.2.10) Let $F(x, y)=(0, x)$ so that $N_{x}-M_{y}=1$. Then by Green's theorem, the area is $-\int_{0}^{2 \pi} a^{2}(t-\sin t) \sin t d t=3 \pi a^{2}$. (Since F is 0 on the x -axis)
(11) (6.2.11) C is negatively oriented, and $N_{x}-M_{y}=5$. So by Green's theorem, the integral is just $-5 \times$ Area $=-45$.
(12) (6.2.14) We need to subtract the area of the ellipse from 25π. Take $F(x, y)=(0, x)$ so that $N_{x}-M_{y}=1$. Then by Green's theorem, the area of the ellipse is the line integral of F on the boundary of the ellipse. Let $(x, y)=(3 \cos t, 2 \sin t)$. The area of the ellipse is $\int_{0}^{2 \pi} 6 \cos ^{2} t d t=6 \pi$. Hence the area between the circle and the ellipse is 19π.
(13) (6.2.19) The integrand vector field is smooth everywhere. Since $N_{x}-M_{y}=3 x^{2}-3 x^{2}=0$, by Green's theorem, the integral is 0 .
(14) (6.2.20) The integrand vector field is smooth everywhere. Since $N_{x}-M_{y}=3 x^{2}+2+3 y^{2}>0$ for all x, y, by Green's theorem, the integral has the same value as the double integral of a positive function. Hence it's always positive.
(15) (6.2.25) Let $F=\nabla f$. Then by the divergence theorem in the plane, we have

$$
\oint_{\partial D} \nabla f \cdot \mathbf{n} d s=\iint_{D} \nabla^{2} f d A
$$

