
MODEL ANSWERS TO HWK #11
(18.022 FALL 2010)

(1) (6.1.1)
(a) x′ = (−3, 4) so ||x′|| = 5, hence∫

x

fds = 5

∫ 2

0

(2− 3t+ 8t− 2)dt = 50 .

(b) x′ = (− sin t, cos t) so ||x′|| = 1, hence∫
x

fds =

∫ π

0

(cos t+ 2 sin t) = 4 .

(2) (6.1.3) x′ = (1, 1, 3
√
t/2) so ||x′|| =

√
2 + 9t/4, hence∫

x

fds =

∫ 3

1

t+ t3/2

t+ t3/2

√
2 + 9t/4dt .

We perform the substitution t = 4
9
(u− 2) and get that this equals∫ 35/4

17/4

4
√
u/9du =

1

27
[173/2 − 353/2] .

(3) (6.1.7) x′ = (cos t, sin t), hence∫
x

F · ds =

∫ π/2

0

[(− cos t+ 2) cos t+ sin2 t]dt .

It easy to see by change of variable that
∫ π/2
0

sin2 t =
∫ pi/2
0

cos2 t and so the above intergal
equals ∫ π/2

0

2 cos tdt = 2 .

(4) (6.1.11) x′ = (−3 sin 3t, 3 cos 3t), hence∫
x

xdy − ydx =

∫ π

0

3 cos2 3t+ 3 sin2 3t = 3π .

(5) (6.1.13) x′ = (2e2t cos 3t− 3e2t sin 3t, 2e2t sin 3t+ 3e2t cos 3t), hence∫
x

xdx+ ydy

(x2 + y2)3/2
=

∫ 2π

0

2e4t

e6t
= 1− e−4π .

(6) (6.1.16) A parametrization of the curve (there is more than one) is x(t) = (t, 5− 4t, 2t− 1)
for 1 ≤ t ≤ 2. We have x′ = (1,−4, 2), hence the work is∫ 2

1

[t2(5− 4t)− 4(2t− 1) + 2(6t− 5)]dt =

∫ 2

1

[−4t3 + 5t2 + 4t− 6]dt = −3
1

3
.
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(7) (6.1.19) Parameterize C by a curve x defined by

x(t) =


(t, t) 0 ≤ t ≤ 1 ,

(t, 1) 1 ≤ t ≤ 3 ,

(3, 4− t) 3 ≤ t ≤ 4 ,

(7− t, 0) 4 ≤ t ≤ 7 .

Note that this curve have clockwise orientation, so we will remember to take−1 to whatever
we get in the integral. We have

dx =


1 0 ≤ t ≤ 3 ,

0 3 ≤ t ≤ 4 ,

−1 4 ≤ t ≤ 7 ,

and

dy =


1 0 ≤ t ≤ 1 ,

0 1 ≤ t ≤ 3 ,

−1 3 ≤ t ≤ 4 ,

0 4 ≤ t ≤ 7 .

Thus∫
C

x2ydx− (x+ y)dy = −
∫ 1

0

t3dt−
∫ 3

1

t2dt+

∫ 1

0

2tdt−
∫ 4

3

(7− t)dt = −137

12
.

(8) (6.1.21) A parametrization of the curve is x(t) = (1 + 4t, 1 + 2t, 2 − t) for 0 ≤ t ≤ 1, so
x′ = (4, 2,−1). Hence∫

C

yzdx− xydy + xydz =

∫ 1

0

[4(1 + 2t)(2− t)− 2(1 + 4t)(2− t)− (1 + 4t)(1 + 2t)]dt = −11

3
.

(9) (6.2.8) Let D be the ellipse. We have Nx = 1,My = −4, so by Green’s theorem the work
equals ∫ ∫

D

−3dxdy = −12π .

(10) (6.2.10) Let F (x, y) = (0, x) so that Nx −My = 1. Then by Green’s theorem, the area is

−
∫ 2π

0
a2(t− sin t) sin tdt = 3πa2. (Since F is 0 on the x-axis)

(11) (6.2.11) C is negatively oriented, and Nx −My = 5. So by Green’s theorem, the integral is
just −5× Area = −45.

(12) (6.2.14) We need to subtract the area of the ellipse from 25π. Take F (x, y) = (0, x) so
that Nx −My = 1. Then by Green’s theorem, the area of the ellipse is the line integral of
F on the boundary of the ellipse. Let (x, y) = (3 cos t, 2 sin t). The area of the ellipse is∫ 2π

0
6 cos2 tdt = 6π. Hence the area between the circle and the ellipse is 19π.

(13) (6.2.19) The integrand vector field is smooth everywhere. Since Nx −My = 3x2 − 3x2 = 0,
by Green’s theorem, the integral is 0.

(14) (6.2.20) The integrand vector field is smooth everywhere. Since Nx−My = 3x2+2+3y2 > 0
for all x, y, by Green’s theorem, the integral has the same value as the double integral of a
positive function. Hence it’s always positive.
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(15) (6.2.25) Let F = ∇f . Then by the divergence theorem in the plane, we have∮
∂D

∇f · nds =

∫ ∫
D

∇2fdA


