MODEL ANSWERS TO HWK \#1

1.1.20. (a) $\overrightarrow{0}$. Suppose that $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$. Then

$$
0 \cdot \vec{a}=\left(0 \cdot a_{1}, 0 \cdot a_{2}, 0 \cdot a_{3}\right)=(0,0,0)=\overrightarrow{0} .
$$

The case of a vector in \mathbb{R}^{2} is similar (and easier).
(b) \vec{a}. Suppose that $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$. Then

$$
1 \cdot \vec{a}=\left(1 \cdot a_{1}, 1 \cdot a_{2}, 1 \cdot a_{3}\right)=\left(a_{1}, a_{2}, a_{3}\right)=\vec{a} .
$$

The case of a vector in \mathbb{R}^{2} is similar (and easier).
1.1.22. Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and let $P=(x, y, z)$ be a general point of the parallelogram. Then

$$
\overrightarrow{O P}=\overrightarrow{O P_{0}}+\overrightarrow{P_{0} P}
$$

Now

$$
\overrightarrow{P_{0} P}=\lambda \vec{a}+\mu \vec{b}
$$

where $0 \leq \lambda \leq 1$ and $0 \leq \mu \leq 1$. (Indeed to get to P from P_{0}, one slides along the side parallel to \vec{a} and then slides in the direction of \vec{b}.) So

$$
\begin{aligned}
(x, y, z) & =\left(x_{0}, y_{0}, z_{0}\right)+\lambda\left(a_{1}, a_{2}, a_{3}\right)+\mu\left(b_{1}, b_{2}, b_{3}\right) \\
& =\left(x_{0}+\lambda a_{1}+\mu b_{1}, y_{0}+\lambda a_{2}+\mu b_{2}, z_{0}+\lambda a_{3}+\mu b_{3}\right) .
\end{aligned}
$$

1.1.24. (a) 4 mph .
(b) Since $(5,10)=1 / 10(50,100)$ it takes six minutes until the plane is directly above the skyscraper.
(c) In six minutes the plane climbs $2 / 5$ th of a mile. Now one mile is 5,280 feet (google is your friend), so the plane is 2112 feet above the ground. So it clears the skyscraper by

$$
2112-1250=862
$$

feet.
1.2.3. $(3, \pi,-7)=3 \hat{\imath}+\pi \hat{\jmath}-7 \hat{k}$.
1.2.10 $\pi \hat{\imath}-\hat{\jmath}=(\pi,-1,0)$.
1.2.11 (a) We want c_{1} and c_{2} such that

$$
(3,1)=\left(c_{1}+c_{2}, c_{1}-c_{2}\right)
$$

that is, we want

$$
\begin{aligned}
& c_{1}+c_{2}=3 \\
& c_{1}-c_{2}=1 .
\end{aligned}
$$

Adding both equations we get $2 c_{1}=4$, so that $c_{1}=2$ and subtracting both equations gives $2 c_{2}=2$, so that $c_{2}=1$. It is easy to check that these values for c_{1} and c_{2} work.
(b) We want c_{1} and c_{2} such that

$$
(3,-5)=\left(c_{1}+c_{2}, c_{1}-c_{2}\right),
$$

that is, we want

$$
\begin{aligned}
& c_{1}+c_{2}=3 \\
& c_{1}-c_{2}=-5 .
\end{aligned}
$$

Adding both equations we get $2 c_{1}=-2$, so that $c_{1}=-1$ and subtracting both equations gives $2 c_{2}=8$, so that $c_{2}=4$. It is easy to check that these values for c_{1} and c_{2} work.
(c) We want c_{1} and c_{2} such that

$$
\left(b_{1}, b_{2}\right)=\left(c_{1}+c_{2}, c_{1}-c_{2}\right),
$$

that is, we want

$$
\begin{aligned}
& c_{1}+c_{2}=b_{1} \\
& c_{1}-c_{2}=b_{2} .
\end{aligned}
$$

Adding both equations we get $2 c_{1}=b_{1}+b_{2}$, so that $c_{1}=\left(b_{1}+b_{2}\right) / 2$ and subtracting both equations gives $2 c_{2}=b_{1}-b_{2}$, so that $c_{2}=\left(b_{1}-b_{2}\right) / 2$. We check that these values actually work:

$$
\frac{b_{1}+b_{2}}{2}(1,1)+\frac{b_{1}-b_{2}}{2}(1,-1)=\left(b_{1}, b_{2}\right)=\vec{b},
$$

as expected and required.
1.2.14. $(x, y, z)=(12,-2,0)+t(5,-12,1)=(12+5 t,-2-12 t, t)$.
1.2.16 $(x, y, z)=(2,1,2)+t(3-2,-1-1,5-2)=(2+t, 1-2 t, 2+3 t)$.
1.2.24. If we plug in $t=0$, then we see that the point $(-5,2,1)$ lies on the first line. Now if this point lies on the second line, then we may find t such that $(1-2 t, 11-3 t, 6 t-17)=(-5,2,1)$. Comparing the first coordinates, we see that $1-2 t=-5$, that is, $t=3$. It is easy to see that then the second and third coordinates agree as well. So the two lines share the point $(-5,2,1)$.
If we plug in $t=0$ to the second line, then we get the point $(1,11,-17)$. Now if this point lies on the first line, then we may find t such that $(2 t-5,3 t+2,1-6 t)=(1,11,-17)$. Looking at the first coordinate, we must have $t=3$, and then it is easy to see that the second and third coordinates come out right.
So the two lines share two points. As any two points determine a unique line, l_{1} and l_{2} must indeed be the same line.
1.2.28. (a) $(7,-2,1)$ and $(13,1,-8)$.
(b) $(2,1,-3)$.
(c) When $t-2=1 / 6$, so that $t=2+1 / 6$, that is, after 130 seconds.
(d) The bird has y-coordinate equal to 4 after exactly six minutes. At this point its x-coordinate is 19 , so no, the bird is never at this point (assuming the bird does not cheat and change directions on us).
1.2.30. We want to find t such that

$$
5(1-4 t)-2(t-3 / 2)+(2 t+1)=1
$$

so that

$$
-20 t+9=1
$$

and so $t=-2 / 5$. This is the point $(1-8 / 5,-2 / 5-3 / 2,-4 / 5+1)=$ $(-3 / 5,-21 / 10,-1 / 5)$.
1.2 .35 . We want to know if we can find s and t such that

$$
(2 s+1,-3 s, s-1)=(3 t+1, t+5,7-t) .
$$

Adding the last two coordinates, we get $-2 s-1=12$, so that $s=13 / 2$. Adding all of the coordinates together, we get $0=3 t+13$, so that $t=$ $-13 / 3$. But then the third coordinate is a fraction with denominator 2, looking at the LHS and with denominator 3, looking at the RHS. As this is absurd, there are no such s and t and so the lines don't intersect. 1.2.38. Let $P=(x, y)$. The point A has coordinates (at,a) at time t.

We have

$$
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}
$$

Relative to A, the point P traces a circle, clockwise (anti, anti-clockwise, as it were), starting at the point $(0,-b)$. In other words the angle is $3 \pi / 2-t$, at time t and so

$$
\overrightarrow{A P}=(b \cos (3 \pi / 2-t), b \sin (3 \pi / 2-t))=(-b \sin t,-b \cos t)
$$

Therefore

$$
(x, y)=\overrightarrow{O P}=(a t-b \sin t, a-b \cos t)
$$

There are machines, much like lawnmowers, whose job it is to make holes in the lawn. They have spikes instead of blades. If the point P is the endpoint of one of the spikes, then this is an example where $b>a$. 1.3.4. $\vec{a} \cdot \vec{b}=2-2+0=0,\|\vec{a}\|=\sqrt{4+1}=\sqrt{5}$, and $\|\vec{b}\|=\sqrt{1+4+9}=$ $\sqrt{14}$.
1.3.8. $\vec{a} \cdot \vec{b}=-1+2-2=-1,\|\vec{a}\|=\sqrt{3}$ and $\|\vec{b}\|=3$. It follows that

$$
-1=3 \sqrt{3} \cos \theta \quad \text { so that } \quad \cos \theta=\frac{-1}{3 \sqrt{3}}
$$

So $\pi / 2<\theta<\pi$. In fact

$$
\theta \approx 1.764
$$

1.3.12. $\vec{a} \cdot \vec{b}=2-4+2=0 . \operatorname{So~}_{\operatorname{proj}_{\vec{a}}} \vec{b}=\overrightarrow{0}$.
1.3.13. Let $\vec{v}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$. Then

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{1}{\sqrt{6}}(2 \hat{\imath}-\hat{\jmath}+\hat{k}),
$$

is a unit vector which points in the direction of \vec{v}.
13.1.17. We suppose that neither \vec{a} nor \vec{b} is the zero vector. $\operatorname{proj}_{\vec{a}} \vec{b}=\operatorname{proj}_{\vec{b}} \vec{a}$ if and only if either \vec{a} and \vec{b} are orthogonal or $\vec{a}=\vec{b}$. If \vec{a} and \vec{b} are orthogonal, then both projections are the zero vector. If $\vec{a}=\vec{b}$ then both projections are equal to \vec{a}. So one direction is clear. Suppose that $\operatorname{proj}_{\vec{a}} \vec{b}=\operatorname{proj}_{\vec{b}} \vec{a}$. If \vec{a} and \vec{b} are not orthogonal, then both sides of this equation are non-zero vectors. As the LHS is parallel to \vec{a} and the RHS is parallel to \vec{b}, it follows that \vec{a} and \vec{b} are parallel. In this case the LHS is equal to \vec{b} and the RHS is equal to \vec{a}. But then $\vec{a}=\vec{b}$.

