9. The derivative

The derivative of a function represents the best linear approximation of that function. In one variable, we are looking for the equation of a straight line. We know a point on the line so that we only need to determine the slope.

Definition 9.1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be a real number. f is differentiable at a, with derivative $\lambda \in \mathbb{R}$, if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lambda .
$$

To understand the definition of the derivative of a multi-variable function, it is slightly better to recast (9.1):

Definition 9.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be a real number. f is differentiable at a, with derivative $\lambda \in \mathbb{R}$, if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-\lambda(x-a)}{x-a}=0 .
$$

We are now ready to give the definition of the derivative of a function of more than one variable:z

Definition 9.3. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a function and let $P \in \mathbb{R}^{n}$ be a point. f is differentiable at P, with derivative the $m \times n$ matrix A, if

$$
\lim _{Q \rightarrow P} \frac{f(Q)-f(P)-A \overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=0
$$

We will write $D f(P)=A$.
So how do we compute the derivative? We want to find the matrix A. Suppose that

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
A \hat{e}_{1}=A\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{a}{c}
$$

and

$$
A \hat{e}_{2}=A\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{0}{1}=\binom{b}{d} .
$$

In general, given an $m \times n$ matrix A, we get the j th column of A, simply by multiplying A by the column vector determined by \hat{e}_{j}.

So we want to know what happens if we approach P along the line determined by \hat{e}_{j}. So we take $\overrightarrow{P Q}=h \hat{e}_{j}$, where h goes to zero. In
other words, we take $Q=P+h \hat{e}_{j}$. Let's assume that $h>0$. So we consider the fraction

$$
\begin{aligned}
\frac{f(Q)-f(P)-A\left(h \hat{e}_{j}\right)}{\|\overrightarrow{P Q}\|} & =\frac{f(Q)-f(P)-A\left(h \hat{e}_{j}\right)}{h} \\
& =\frac{f(Q)-f(P)-h A \hat{e}_{j}}{h} \\
& =\frac{f(Q)-f(P)}{h}-A \hat{e}_{j} .
\end{aligned}
$$

Taking the limit we get the j th column of A,

$$
A \hat{e}_{j}=\lim _{h \rightarrow 0} \frac{f\left(P+h \hat{e}_{j}\right)-f(P)}{h}
$$

Now $f\left(P+h \hat{e}_{j}\right)-f(P)$ is a column vector, whose entry in the i th row is
$f_{i}\left(P+\hat{e}_{j}\right)-f_{i}(P)=f_{i}\left(a_{1}, a_{2}, \ldots, a_{j-1}, a_{j}+h, a_{j+1}, \ldots, a_{n}\right)-f_{i}\left(a_{1}, a_{2}, \ldots, a_{j-1}, a_{j}, a_{j+1}, \ldots, a_{n}\right)$. and so for the expression on the right, in the i th row, we have

$$
\lim _{h \rightarrow 0} \frac{f_{i}\left(P+h \hat{e}_{j}\right)-f_{i}(P)}{h} .
$$

Definition 9.4. Let $g: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a function and let $P \in \mathbb{R}^{n}$. The partial derivative of f at $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, with respect to x_{j} is the limit

$$
\left.\frac{\partial f}{\partial x_{j}}\right|_{P}=\lim _{h \rightarrow 0} \frac{g\left(a_{1}, a_{2}, \ldots, a_{j}+h, \ldots, a_{n}\right)-g\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{h}
$$

Putting all of this together, we get
Proposition 9.5. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a function.
If f is differentiable at P, then $D f(P)$ is the matrix whose (i, j) entry is the partial derivative

$$
\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{P}
$$

Example 9.6. Let $f: A \longrightarrow \mathbb{R}^{2}$ be the function

$$
f(x, y, z)=\left(x^{3} y+x \sin (x z), \log x y z\right)
$$

Here $A \subset \mathbb{R}^{3}$ is the first octant, the locus where x, y and z are all positive. Supposing that f is differentiable at P, then the derivative is given by the matrix of partial derivatives,

$$
D f(P)=\left(\begin{array}{ccc}
3 x^{2} y+\sin (x z)+x z \cos (x z) & x^{3} & x^{2} \cos (x z) \\
\frac{1}{x} & \frac{1}{y} & \frac{1}{z}
\end{array}\right) .
$$

Definition 9.7. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a differentiable function. Then the derivative of f at $P, D f(P)$ is a row vector, which is called the gradient of f, and is denoted $\left.(\nabla f)\right|_{P}$,

$$
\left(\left.\frac{\partial f}{\partial x_{1}}\right|_{P},\left.\frac{\partial f}{\partial x_{2}}\right|_{P}, \ldots,\left.\frac{\partial f}{\partial x_{n}}\right|_{P}\right)
$$

The point $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ lies on the graph of $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ if and only if $x_{n+1}=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The point $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ lies on the tangent hyperplane of $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ at $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ if and only if

$$
x_{n+1}=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left.(\nabla f)\right|_{P} \cdot\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right) .
$$

In other words, the vector

$$
\left(\left.\frac{\partial f}{\partial x_{1}}\right|_{P},\left.\frac{\partial f}{\partial x_{2}}\right|_{P}, \ldots,\left.\frac{\partial f}{\partial x_{n}}\right|_{P},-1\right),
$$

is a normal vector to the tangent hyperplane and of course the point $\left(a_{1}, a_{2}, \ldots, a_{n}, f\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ is on the tangent hyperplane.
Example 9.8. Let

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<r^{2}\right\},
$$

the open ball of radius r, centred at the origin.
Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given by

$$
f(x, y)=\sqrt{r^{2}-x^{2}-y^{2}} .
$$

Then

$$
\frac{\partial f}{\partial x}=\frac{-2 x / 2}{\sqrt{r^{2}-x^{2}-y^{2}}}=\frac{-x}{\sqrt{r^{2}-x^{2}-y^{2}}}
$$

and so by symmetry,

$$
\frac{\partial f}{\partial y}=\frac{-y}{\sqrt{r^{2}-x^{2}-y^{2}}}=\frac{-x}{\sqrt{r^{2}-x^{2}-y^{2}}}
$$

At the point (a, b), the gradient is

$$
\left.(\nabla f)\right|_{(a, b)}=\frac{-1}{\sqrt{r^{2}-a^{2}-b^{2}}}(a, b)
$$

So the equation for the tangent plane is

$$
z=f(a, b)-\frac{1}{\sqrt{r^{2}-a^{2}-b^{2}}}(a(x-a)+b(x-b)) .
$$

For example, if $(a, b)=(0,0)$, then the tangent plane is

$$
z=r
$$

as expected.

