9. The derivative

The derivative of a function represents the best linear approximation of that function. In one variable, we are looking for the equation of a straight line. We know a point on the line so that we only need to determine the slope.

Definition 9.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be a real number. f is **differentiable at** a, with derivative $\lambda \in \mathbb{R}$, if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lambda.$$

To understand the definition of the derivative of a multi-variable function, it is slightly better to recast (9.1):

Definition 9.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $a \in \mathbb{R}$ be a real number. f is **differentiable at** a, with derivative $\lambda \in \mathbb{R}$, if

$$\lim_{x \to a} f(x) - f(a) - \lambda(x - a) = 0.$$

We are now ready to give the definition of the derivative of a function of more than one variable:

Definition 9.3. Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a function and let $P \in \mathbb{R}^n$ be a point. f is **differentiable at** P, with derivative the $m \times n$ matrix A, if

$$\lim_{Q \to P} \frac{f(Q) - f(P) - A\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|} = 0.$$

We will write $Df(P) = A$.

So how do we compute the derivative? We want to find the matrix A. Suppose that

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then

$$A\hat{e}_1 = A \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$$

and

$$A\hat{e}_2 = A \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}.$$

In general, given an $m \times n$ matrix A, we get the jth column of A, simply by multiplying A by the column vector determined by \hat{e}_j.

So we want to know what happens if we approach P along the line determined by \hat{e}_j. So we take $\overrightarrow{PQ} = h\hat{e}_j$, where h goes to zero. In
other words, we take \(Q = P + h\hat{e}_j \). Let’s assume that \(h > 0 \). So we consider the fraction
\[
\frac{f(Q) - f(P) - A(h\hat{e}_j)}{\|PQ\|} = \frac{f(Q) - f(P) - hA\hat{e}_j}{h} = \frac{f(Q) - f(P) - hA\hat{e}_j}{h} = \frac{f(Q) - f(P)}{h} - A\hat{e}_j.
\]

Taking the limit we get the \(j \)th column of \(A \),
\[
A\hat{e}_j = \lim_{h \to 0} \frac{f(P + h\hat{e}_j) - f(P)}{h}.
\]

Now \(f(P + h\hat{e}_j) - f(P) \) is a column vector, whose entry in the \(i \)th row is
\[
f_i(P + h\hat{e}_j) - f_i(P) = f_i(a_1, a_2, \ldots, a_{j-1}, a_j + h, a_{j+1}, \ldots, a_n) - f_i(a_1, a_2, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_n).
\]
and so for the expression on the right, in the \(i \)th row, we have
\[
\lim_{h \to 0} \frac{f_i(P + h\hat{e}_j) - f_i(P)}{h}.
\]

Definition 9.4. Let \(g: \mathbb{R}^n \to \mathbb{R} \) be a function and let \(P \in \mathbb{R}^n \). The **partial derivative** of \(f \) at \(P = (a_1, a_2, \ldots, a_n) \), with respect to \(x_j \) is the limit
\[
\frac{\partial f}{\partial x_j} \bigg|_P = \lim_{h \to 0} \frac{g(a_1, a_2, \ldots, a_j + h, \ldots, a_n) - g(a_1, a_2, \ldots, a_n)}{h}.
\]

Putting all of this together, we get

Proposition 9.5. Let \(f: \mathbb{R}^n \to \mathbb{R}^m \) be a function.

If \(f \) is differentiable at \(P \), then \(Df(P) \) is the matrix whose \((i, j)\) entry is the partial derivative
\[
\frac{\partial f_i}{\partial x_j} \bigg|_P.
\]

Example 9.6. Let \(f: A \to \mathbb{R}^2 \) be the function
\[
f(x, y, z) = (x^3 y + x \sin(xz), \log xyz).
\]
Here \(A \subset \mathbb{R}^3 \) is the first octant, the locus where \(x, y \) and \(z \) are all positive. Supposing that \(f \) is differentiable at \(P \), then the derivative is given by the matrix of partial derivatives,
\[
Df(P) = \begin{pmatrix}
3x^2 y + \sin(xz) + xz \cos(xz) & x^3 & x^2 \cos(xz)
\end{pmatrix}.
\]
Definition 9.7. Let \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) be a differentiable function. Then the derivative of \(f \) at \(P \), \(Df(P) \), is a row vector, which is called the **gradient** of \(f \), and is denoted \((\nabla f)\big|_P\),

\[
\left(\frac{\partial f}{\partial x_1} \big|_P, \frac{\partial f}{\partial x_2} \big|_P, \ldots, \frac{\partial f}{\partial x_n} \big|_P \right).
\]

The point \((x_1, x_2, \ldots, x_n, x_{n+1})\) lies on the graph of \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) if and only if \(x_{n+1} = f(x_1, x_2, \ldots, x_n) \).

The point \((x_1, x_2, \ldots, x_n, x_{n+1})\) lies on the tangent hyperplane of \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) at \(P = (a_1, a_2, \ldots, a_n) \) if and only if

\[
x_{n+1} = f(a_1, a_2, \ldots, a_n) + (\nabla f)\big|_P \cdot (x_1 - a_1, x_2 - a_2, \ldots, x_n - a_n).
\]

In other words, the vector

\[
\left(\frac{\partial f}{\partial x_1} \big|_P, \frac{\partial f}{\partial x_2} \big|_P, \ldots, \frac{\partial f}{\partial x_n} \big|_P, -1 \right),
\]

is a normal vector to the tangent hyperplane and of course the point \((a_1, a_2, \ldots, a_n, f(a_1, a_2, \ldots, a_n))\) is on the tangent hyperplane.

Example 9.8. Let

\[
D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < r^2 \},
\]

the open ball of radius \(r \), centred at the origin.

Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) be the function given by

\[
f(x, y) = \sqrt{r^2 - x^2 - y^2}.
\]

Then

\[
\frac{\partial f}{\partial x} = \frac{-2x/2}{\sqrt{r^2 - x^2 - y^2}} = \frac{-x}{\sqrt{r^2 - x^2 - y^2}},
\]

and so by symmetry,

\[
\frac{\partial f}{\partial y} = \frac{-y}{\sqrt{r^2 - x^2 - y^2}} = \frac{-x}{\sqrt{r^2 - x^2 - y^2}},
\]

At the point \((a, b)\), the gradient is

\[
(\nabla f)\big|_{(a,b)} = \frac{-1}{\sqrt{r^2 - a^2 - b^2}}(a, b).
\]

So the equation for the tangent plane is

\[
z = f(a, b) - \frac{1}{\sqrt{r^2 - a^2 - b^2}}(a(x - a) + b(x - b)).
\]

For example, if \((a, b) = (0, 0)\), then the tangent plane is

\[
z = r,
\]

as expected.