8. **Limits**

Definition 8.1. Let \(P \in \mathbb{R}^n \) be a point. The **open ball of radius** \(\epsilon > 0 \) **about** \(P \) is the set

\[
B_\epsilon(P) = \{ Q \in \mathbb{R}^n \mid \| \overrightarrow{PQ} \| < \epsilon \}.
\]

The **closed ball of radius** \(\epsilon > 0 \) **about** \(P \) is the set

\[
\{ Q \in \mathbb{R}^n \mid \| \overrightarrow{PQ} \| \leq \epsilon \}.
\]

Definition 8.2. A subset \(A \subset \mathbb{R}^n \) is called **open** if for every \(P \in A \) there is an \(\epsilon > 0 \) such that the open ball of radius \(\epsilon \) about \(P \) is entirely contained in \(A \),

\[
B_\epsilon(P) \subset A.
\]

We say that \(B \) is **closed** if the complement of \(B \) is open.

Put differently, an open set is a union of open balls. Open balls are open and closed balls are closed. \([0, 1)\) is neither open nor closed.

Definition 8.3. Let \(B \subset \mathbb{R}^n \). We say that \(P \in \mathbb{R}^n \) is a **limit point** if for every \(\epsilon > 0 \) the intersection

\[
B_\epsilon(P) \cap B \neq \emptyset.
\]

Example 8.4. \(0 \) is a limit point of

\[
\left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R}.
\]

Lemma 8.5. A subset \(B \subset \mathbb{R}^n \) is closed if and only if \(B \) contains all of its limit points.

Example 8.6. \(\mathbb{R}^n - \{0\} \) is open. One can see this directly from the definition or from the fact that the complement \(\{0\} \) is closed.

Definition 8.7. Let \(A \subset \mathbb{R}^n \) and let \(P \in \mathbb{R}^n \) be a limit point. Suppose that \(f : A \to \mathbb{R}^m \) is a function.

We say that \(f \) **approaches** \(L \) as \(Q \) **approaches** \(P \) and write

\[
\lim_{Q \to P} f(Q) = L,
\]

if for every \(\epsilon > 0 \) we may find \(\delta > 0 \) such that whenever \(Q \in B_\delta(P) \cap A, Q \neq P, f(Q) \in B_\epsilon(L) \). In this case we call \(L \) the **limit**.

It might help to understand the notion of a limit in terms of a game played between two people. Let’s call the first player Larry and the second player Norman. Larry wants to show that \(L \) is the limit of \(f(Q) \) as \(Q \) approaches \(P \) and Norman does not.

So Norman gets to choose \(\epsilon > 0 \). Once Norman has chosen \(\epsilon > 0 \), Larry has to choose \(\delta > 0 \). The smaller that Norman chooses \(\epsilon > 0 \),
the harder Larry has to work (typically he will have to make a choice of $\delta > 0$ very small).

Proposition 8.8. Let $f : A \rightarrow \mathbb{R}^m$ and $g : A \rightarrow \mathbb{R}^m$ be two functions. Let $\lambda \in \mathbb{R}$ be a scalar. If P is a limit point of A and

$$\lim_{Q \rightarrow P} f(Q) = L \quad \text{and} \quad \lim_{Q \rightarrow P} g(Q) = M,$$

then

1. $\lim_{Q \rightarrow P} (f + g)(Q) = L + M$, and
2. $\lim_{Q \rightarrow P} (\lambda f)(Q) = \lambda L$.

Now suppose that $m = 1$.

3. $\lim_{Q \rightarrow P} (fg)(Q) = LM$, and
4. if $M \neq 0$, then $\lim_{Q \rightarrow P} (f/g)(Q) = L/M$.

Proof. We just prove (1). Suppose that $\epsilon > 0$. As L and M are limits, we may find δ_1 and δ_2 such that, if $\|Q - P\| < \delta_1$ and $Q \in A$, then $\|f(Q) - L\| < \epsilon/2$ and if $\|Q - P\| < \delta_2$ and $Q \in A$, then $\|g(Q) - M\| < \epsilon/2$.

Let $\delta = \min(\delta_1, \delta_2)$. If $\|Q - P\| < \delta$ and $Q \in A$, then

$$\|(f + g)(Q) - L - M\| = \|(f(Q) - L) + (g(Q) - M)\|
\leq \|(f(Q) - L)\| + \|(g(Q) - M)\|
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}
= \epsilon,$$

where we applied the triangle inequality to get from the second line to the third line. This is (1). (2-4) have similar proofs.

Definition 8.9. Let $A \subset \mathbb{R}^n$ and let $P \in A$. If $f : A \rightarrow \mathbb{R}^m$ is a function, then we say that f is continuous at P, if

$$\lim_{Q \rightarrow P} f(Q) = f(P).$$

We say that f is continuous, if it continuous at every point of A.

Theorem 8.10. If $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function, then f is continuous.

A similar result holds if f is a rational function (a quotient of two polynomials).

Example 8.11. $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is continuous.

Sometimes Larry is very lucky:
Example 8.12. Does the limit
\[\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x - y}, \]
exist? Here the domain of \(f \) is
\[A = \{ (x,y) \in \mathbb{R}^2 \mid x \neq y \}. \]
Note \((0,0)\) is a limit point of \(A \). Note that if \((x,y)\in A\), then
\[\frac{x^2 - y^2}{x - y} = x + y, \]
so that
\[\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x - y} = \lim_{(x,y)\to(0,0)} x + y = 0. \]
So the limit does exist.

Norman likes the following result:

Proposition 8.13. Let \(A \subset \mathbb{R}^n \) and let \(B \subset \mathbb{R}^m \). Let \(f: A \to B \) and \(g: B \to \mathbb{R}^l \).
Suppose that \(P \) is a limit point of \(A \), \(L \) is a limit point of \(B \) and \(\lim_{Q\to P} f(Q) = L \) and \(\lim_{M\to L} g(M) = E. \)
Then
\[\lim_{Q\to P} (g \circ f)(Q) = E. \]

Proof. Let \(\epsilon > 0 \). We may find \(\delta > 0 \) such that if \(\|M - L\| < \delta \), and \(M \in B \), then \(\|g(M) - E\| < \epsilon \). Given \(\delta > 0 \) we may find \(\eta > 0 \) such that if \(\|Q - P\| < \eta \) and \(Q \in A \), then \(|f(Q) - L| < \eta \). But then if \(\|Q - P\| < \eta \) and \(Q \in A \), then \(M = f(Q) \in B \) and \(\|M - L\| < \delta \), so that
\[\|(g \circ f)(Q) - E\| = \|g(f(Q)) - E\| = \|g(M) - E\| < \epsilon. \]

Example 8.14. Does
\[\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \]
exist? The answer is no.
To show that the answer is no, we suppose that the limit exists.
Suppose we consider restricting to the \(x \)-axis. Let
\[f: \mathbb{R} \to \mathbb{R}^2, \]
be given by \(t \rightarrow (t,0) \). As \(f \) is continuous, if we compose we must get a function with a limit,

\[
\lim_{t \to 0} \frac{0}{t^2 + 0} = \lim_{t \to 0} 0 = 0.
\]

Now suppose that we restrict to the line \(y = x \). Now consider the function

\[
f : \mathbb{R} \rightarrow \mathbb{R}^2,
\]

be given by \(t \rightarrow (t,t) \). As \(f \) is continuous, if we compose we must get a function with a limit,

\[
\lim_{t \to 0} \frac{t^2}{t^2 + t^2} = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}.
\]

The problem is that the limit along two different lines is different. So the original limit cannot exist.

Example 8.15. Does the limit

\[
\lim_{(x,y) \to (0,0)} \frac{x^3}{x^2 + y^2},
\]

exist? Let us use polar coordinates. Note that

\[
\frac{x^3}{x^2 + y^2} = \frac{r^3 \cos^3 \theta}{r^2} = r \cos^3 \theta.
\]

So we guess the limit is zero.

\[
\lim_{(x,y) \to (0,0)} \left| \frac{x^3}{x^2 + y^2} \right| = \lim_{r \to 0} |r \cos^3 \theta| \\
\leq \lim_{r \to 0} |r| = 0.
\]

Example 8.16. Does the limit

\[
\lim_{(x,y,z) \to (0,0,0)} \frac{xyz}{x^2 + y^2 + z^2},
\]

exist? Same trick, but now let us use spherical coordinates.

\[
\lim_{(x,y,z) \to (0,0,0)} \left| \frac{xyz}{x^2 + y^2 + z^2} \right| = \lim_{\rho \to 0} \left| \frac{\rho^3 \cos^2 \phi \sin \phi \cos \theta \sin \theta}{\rho^2} \right| \\
= \lim_{\rho \to 0} \left| \rho \cos^2 \phi \sin \phi \cos \theta \sin \theta \right| \\
\leq \lim_{\rho \to 0} |\rho| = 0.
\]

Sometimes Norman needs to restrict to more complicated curves than just lines:
Example 8.17. Does the limit
\[\lim_{(x,y) \to (0,0)} \frac{y}{y + x^2}, \]
exist? If we restrict to the line \(t \to (at, bt) \), then we get
\[\lim_{t \to 0} \frac{bt}{bt + a^2t^2} = \lim_{t \to 0} \frac{b}{b + at} = 1. \]
But if we restrict to the conic \(t \to (t, at^2) \), then we get
\[\lim_{t \to 0} \frac{at^2}{at^2 + t^2} = \lim_{t \to 0} \frac{a}{1 + a} = \frac{a}{1 + a}, \]
and the limit changes as we vary \(a \), so that the limit does not exist.

Note that if we start with
\[\frac{y}{y + x^d}, \]
then Norman even needs to use curves of degree \(d \),
\[t \to (t, at^d). \]