8. LiMITS

Definition 8.1. Let P € R"™ be a point. The open ball of radius
€ > 0 about P is the set

B(P)={QeR"||PQ] < ¢}
The closed ball of radius ¢ > 0 about P is the set

{QeR[|PQ] <e}.

Definition 8.2. A subset A C R" is called open if for every P € A
there is an € > 0 such that the open ball of radius € about P is entirely
contained in A,

B.(P) C A.
We say that B is closed if the complement of B is open.

Put differently, an open set is a union of open balls. Open balls are
open and closed balls are closed. [0,1) is neither open nor closed.

Definition 8.3. Let B C R". We say that P € R" is a limit point
iof for every e > 0 the intersection

B(P)NB # @.
Example 8.4. 0 is a limit point of
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Lemma 8.5. A subset B C R" is closed if and only if B contains all
of its limit points.

Example 8.6. R" — {0} is open. One can see this directly from the
definition or from the fact that the complement {0} is closed.

Definition 8.7. Let A C R" and let P € R™ be a limit point. Suppose
that f: A — R™ is a function.
We say that f approaches L as @ approaches P and write

lim £(Q) = L.

if for every e > 0 we may find 6 > 0 such that whenever Q) € Bs(P)NA,
Q# P, f(Q) € BJ(L). In this case we call L the limit.

It might help to understand the notion of a limit in terms of a game
played between two people. Let’s call the first player Larry and the
second player Norman. Larry wants to show that L is the limit of f(Q)
as () approaches P and Norman does not.

So Norman gets to choose € > 0. Once Norman has chosen € > 0,

Larry has to choose § > 0. The smaller that Norman chooses € > 0,
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the harder Larry has to work (typically he will have to make a choice
of § > 0 very small).

Proposition 8.8. Let f: A — R™ and g: A — R™ be two func-
tions. Let A € R be a scalar. If P is a limit point of A and

lm f(@ =L and  lim g(@Q) = M,

then

(1) limg,p(f+9)(Q) =L+ M, and
Now suppose that m = 1.

(3) limg—p(fg)(Q) = LM, and

(4) if M # 0, then limg_p(f/9)(Q) = L/M.
Proof. We just prove (1). Suppose that € > 0. As L and M are limits,
we may find 0; and Jy such that, if ||QQ — P|| < d; and @ € A, then
I/(Q)—L|| < e/2and if [Q — P|| < 62 and @ € A, then [|g(Q) — L|| <
€/2.

Let § = min(dy,09). If ||Q — P|| < ¢ and @ € A, then

I(f +9)(Q) — L — M| = [[(f(Q) — L) + (9(Q) — M)]|
< [(f(Q) = D)l + [[(9(Q) — M)
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where we applied the triangle inequality to get from the second line to
the third line. This is (1). (2-4) have similar proofs. O

Definition 8.9. Let A C R" and let P € A. If f: A — R™ is a
function, then we say that f is continuous at P, if

li = f(P).
Jim, £(Q) = f(P)
We say that f is continuous, if it continuous at every point of A.

Theorem 8.10. If f: R" — R is a polynomial function, then f is
continuous.

A similar result holds if f is a rational function (a quotient of two
polynomials).

Example 8.11. f: R*> — R given by f(x,y) = 2* +y?* is continuous.

Sometimes Larry is very lucky:
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Example 8.12. Does the limit

. = —Yy
lim ,
(z.y)—(0,0) T —Y

exist? Here the domain of f is
A={(z.y) eR¥|z#y}.
Note (0,0) is a limit point of A. Note that if (z,y) € A, then

22— o2
L—a+y,
r—y
so that ) )
im Y% — fim z4y=o.
(:E,y)*)(o,o) r — y (x,y)ﬁ(0,0)

So the limit does exist.
Norman likes the following result:

Proposition 8.13. Let ACR" and let B C R™. Let f: A — B and
g: B— R
Suppose that P is a limit point of A, L is a limit point of B and

Jm f@)=L and  lim g(M)=E.

Then

lim (g0 f)(Q)=E.

Proof. Let € > 0. We may find § > 0 such that if |[M — L|| < d, and
M € B, then ||g(M) — E|| < e. Given § > 0 we may find n > 0 such
that if ||Q — P|| < 1 and Q € A, then |f(Q) — L|| < n. But then if
|Q —P|| <nand @ € A, then M = f(Q) € B and |M — L|| <9, so
that

(g0 N)@Q) = E| =1g(f(Q) — E]
= [lg(M) — E|
< €. L]

Example 8.14. Does
. Ty
lim ——
(2:4)—(0.0) 7% + y?
exist? The answer is no.
To show that the answer is mo, we suppose that the limit exists.
Suppose we consider restricting to the x-axis. Let
f:R— R?,
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be given byt — (¢,0). As f is continuous, if we compose we must get
a function with a limit,

iy g = g0 =0

Now suppose that we restrict to the line y = x. Now consider the
function

f: R — R?
be given by t —» (t,t). As f is continuous, if we compose we must get
a function with a limit,

: 1 1
(530 2 2

=lim- = —.
t—0 2 2

The problem is that the limit along two different lines is different. So

the original limit cannot exist.

Example 8.15. Does the limit
23
lim ——,
(2.9)=(00) 2% + y?
exrist? Let us use polar coordinates. Note that

x3 r3 cos® 6

5 S = 5 = rcos® 6.
Tty r

So we guess the limit is zero.
3

lim \x—| = lim |r cos® 4|
(zy)=(00) @ +y> 0
<lim |r| = 0.
r—0
Example 8.16. Does the limit
xyz

li Y
(ft,y,Z)lg%O,O,O) 22 4+ y2? + 22’

exist? Same trick, but now let us use spherical coordinates.

p> cos? ¢ sin ¢ cos 6 sin O

TYZ
2 |

lim | ——%——|=lim|
(2,9,2)—=(0,0,0) T2 + y2 4+ 22" p—0 P

= lim |p cos? ¢ sin ¢ cos @ sin 6|
p—0

< lim |p| = 0.
p—0

Sometimes Norman needs to restrict to more complicated curves than

just lines:
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Example 8.17. Does the limit
I Y
im ——,
(@.y)—(0,0) y + 22
exist? If we restrict to the line t — (at,bt), then we get
I bt I
im ——— = lim =
t—0 bt + a?t?2  t—0 b+ at
But if we restrict to the conic t — (t,at?), then we get

at? a a

lim ———— = lim = ,
tsoat2+12 t50l14+a 14+a
and the limit changes as we vary a, so that the limit does not exist.

Note that if we start with
Yy
y+a?’
then Norman even needs to use curves of degree d,

t — (t,at?).
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