
8. Limits

Definition 8.1. Let P ∈ Rn be a point. The open ball of radius
ε > 0 about P is the set

Bε(P ) = {Q ∈ Rn | ‖
−→
PQ‖ < ε }.

The closed ball of radius ε > 0 about P is the set

{Q ∈ Rn | ‖
−→
PQ‖ ≤ ε }.

Definition 8.2. A subset A ⊂ Rn is called open if for every P ∈ A
there is an ε > 0 such that the open ball of radius ε about P is entirely
contained in A,

Bε(P ) ⊂ A.

We say that B is closed if the complement of B is open.

Put differently, an open set is a union of open balls. Open balls are
open and closed balls are closed. [0, 1) is neither open nor closed.

Definition 8.3. Let B ⊂ Rn. We say that P ∈ Rn is a limit point
if for every ε > 0 the intersection

Bε(P ) ∩B 6= ∅.

Example 8.4. 0 is a limit point of

{ 1

n
|n ∈ N } ⊂ R.

Lemma 8.5. A subset B ⊂ Rn is closed if and only if B contains all
of its limit points.

Example 8.6. Rn − {0} is open. One can see this directly from the
definition or from the fact that the complement {0} is closed.

Definition 8.7. Let A ⊂ Rn and let P ∈ Rn be a limit point. Suppose
that f : A −→ Rm is a function.

We say that f approaches L as Q approaches P and write

lim
Q→P

f(Q) = L,

if for every ε > 0 we may find δ > 0 such that whenever Q ∈ Bδ(P )∩A,
Q 6= P , f(Q) ∈ Bε(L). In this case we call L the limit.

It might help to understand the notion of a limit in terms of a game
played between two people. Let’s call the first player Larry and the
second player Norman. Larry wants to show that L is the limit of f(Q)
as Q approaches P and Norman does not.

So Norman gets to choose ε > 0. Once Norman has chosen ε > 0,
Larry has to choose δ > 0. The smaller that Norman chooses ε > 0,
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the harder Larry has to work (typically he will have to make a choice
of δ > 0 very small).

Proposition 8.8. Let f : A −→ Rm and g : A −→ Rm be two func-
tions. Let λ ∈ R be a scalar. If P is a limit point of A and

lim
Q→P

f(Q) = L and lim
Q→P

g(Q) = M,

then

(1) limQ→P (f + g)(Q) = L+M , and
(2) limQ→P (λf)(Q) = λL.

Now suppose that m = 1.

(3) limQ→P (fg)(Q) = LM , and
(4) if M 6= 0, then limQ→P (f/g)(Q) = L/M .

Proof. We just prove (1). Suppose that ε > 0. As L and M are limits,
we may find δ1 and δ2 such that, if ‖Q − P‖ < δ1 and Q ∈ A, then
‖f(Q)−L‖ < ε/2 and if ‖Q−P‖ < δ2 and Q ∈ A, then ‖g(Q)−L‖ <
ε/2.

Let δ = min(δ1, δ2). If ‖Q− P‖ < δ and Q ∈ A, then

‖(f + g)(Q)− L−M‖ = ‖(f(Q)− L) + (g(Q)−M)‖
≤ ‖(f(Q)− L)‖+ ‖(g(Q)−M)‖

≤ ε

2
+
ε

2
= ε,

where we applied the triangle inequality to get from the second line to
the third line. This is (1). (2-4) have similar proofs. �

Definition 8.9. Let A ⊂ Rn and let P ∈ A. If f : A −→ Rm is a
function, then we say that f is continuous at P , if

lim
Q→P

f(Q) = f(P ).

We say that f is continuous, if it continuous at every point of A.

Theorem 8.10. If f : Rn −→ R is a polynomial function, then f is
continuous.

A similar result holds if f is a rational function (a quotient of two
polynomials).

Example 8.11. f : R2 −→ R given by f(x, y) = x2 + y2 is continuous.

Sometimes Larry is very lucky:
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Example 8.12. Does the limit

lim
(x,y)→(0,0)

x2 − y2

x− y
,

exist? Here the domain of f is

A = { (x, y) ∈ R2 |x 6= y }.
Note (0, 0) is a limit point of A. Note that if (x, y) ∈ A, then

x2 − y2

x− y
= x+ y,

so that

lim
(x,y)→(0,0)

x2 − y2

x− y
= lim

(x,y)→(0,0)
x+ y = 0.

So the limit does exist.

Norman likes the following result:

Proposition 8.13. Let A ⊂ Rn and let B ⊂ Rm. Let f : A −→ B and
g : B −→ Rl.

Suppose that P is a limit point of A, L is a limit point of B and

lim
Q→P

f(Q) = L and lim
M→L

g(M) = E.

Then

lim
Q→P

(g ◦ f)(Q) = E.

Proof. Let ε > 0. We may find δ > 0 such that if ‖M − L‖ < δ, and
M ∈ B, then ‖g(M) − E‖ < ε. Given δ > 0 we may find η > 0 such
that if ‖Q − P‖ < η and Q ∈ A, then |f(Q) − L‖ < η. But then if
‖Q − P‖ < η and Q ∈ A, then M = f(Q) ∈ B and ‖M − L‖ < δ, so
that

‖(g ◦ f)(Q)− E‖ = ‖g(f(Q))− E‖
= ‖g(M)− E‖
< ε. �

Example 8.14. Does

lim
(x,y)→(0,0)

xy

x2 + y2

exist? The answer is no.
To show that the answer is no, we suppose that the limit exists.

Suppose we consider restricting to the x-axis. Let

f : R −→ R2,
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be given by t −→ (t, 0). As f is continuous, if we compose we must get
a function with a limit,

lim
t→0

0

t2 + 0
= lim

t→0
0 = 0.

Now suppose that we restrict to the line y = x. Now consider the
function

f : R −→ R2,

be given by t −→ (t, t). As f is continuous, if we compose we must get
a function with a limit,

lim
t→0

t2

t2 + t2
= lim

t→0

1

2
=

1

2
.

The problem is that the limit along two different lines is different. So
the original limit cannot exist.

Example 8.15. Does the limit

lim
(x,y)→(0,0)

x3

x2 + y2
,

exist? Let us use polar coordinates. Note that

x3

x2 + y2
=
r3 cos3 θ

r2
= r cos3 θ.

So we guess the limit is zero.

lim
(x,y)→(0,0)

| x3

x2 + y2
| = lim

r→0
|r cos3 θ|

≤ lim
r→0
|r| = 0.

Example 8.16. Does the limit

lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
,

exist? Same trick, but now let us use spherical coordinates.

lim
(x,y,z)→(0,0,0)

| xyz

x2 + y2 + z2
| = lim

ρ→0
|ρ

3 cos2 φ sinφ cos θ sin θ

ρ2
|

= lim
ρ→0
|ρ cos2 φ sinφ cos θ sin θ|

≤ lim
ρ→0
|ρ| = 0.

Sometimes Norman needs to restrict to more complicated curves than
just lines:

4



Example 8.17. Does the limit

lim
(x,y)→(0,0)

y

y + x2
,

exist? If we restrict to the line t −→ (at, bt), then we get

lim
t→0

bt

bt+ a2t2
= lim

t→0

b

b+ at
= 1.

But if we restrict to the conic t −→ (t, at2), then we get

lim
t→0

at2

at2 + t2
= lim

t→0

a

1 + a
=

a

1 + a
,

and the limit changes as we vary a, so that the limit does not exist.

Note that if we start with
y

y + xd
,

then Norman even needs to use curves of degree d,

t −→ (t, atd).
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