8. Limits

Definition 8.1. Let $P \in \mathbb{R}^{n}$ be a point. The open ball of radius $\epsilon>0$ about P is the set

$$
B_{\epsilon}(P)=\left\{Q \in \mathbb{R}^{n} \mid\|\overrightarrow{P Q}\|<\epsilon\right\} .
$$

The closed ball of radius $\epsilon>0$ about P is the set

$$
\left\{Q \in \mathbb{R}^{n} \mid\|\overrightarrow{P Q}\| \leq \epsilon\right\}
$$

Definition 8.2. A subset $A \subset \mathbb{R}^{n}$ is called open if for every $P \in A$ there is an $\epsilon>0$ such that the open ball of radius ϵ about P is entirely contained in A,

$$
B_{\epsilon}(P) \subset A .
$$

We say that B is closed if the complement of B is open.
Put differently, an open set is a union of open balls. Open balls are open and closed balls are closed. $[0,1)$ is neither open nor closed.

Definition 8.3. Let $B \subset \mathbb{R}^{n}$. We say that $P \in \mathbb{R}^{n}$ is a limit point if for every $\epsilon>0$ the intersection

$$
B_{\epsilon}(P) \cap B \neq \varnothing .
$$

Example 8.4. 0 is a limit point of

$$
\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

Lemma 8.5. A subset $B \subset \mathbb{R}^{n}$ is closed if and only if B contains all of its limit points.
Example 8.6. $\mathbb{R}^{n}-\{0\}$ is open. One can see this directly from the definition or from the fact that the complement $\{0\}$ is closed.

Definition 8.7. Let $A \subset \mathbb{R}^{n}$ and let $P \in \mathbb{R}^{n}$ be a limit point. Suppose that $f: A \longrightarrow \mathbb{R}^{m}$ is a function.

We say that f approaches L as Q approaches P and write

$$
\lim _{Q \rightarrow P} f(Q)=L
$$

if for every $\epsilon>0$ we may find $\delta>0$ such that whenever $Q \in B_{\delta}(P) \cap A$, $Q \neq P, f(Q) \in B_{\epsilon}(L)$. In this case we call L the limit.

It might help to understand the notion of a limit in terms of a game played between two people. Let's call the first player Larry and the second player Norman. Larry wants to show that L is the limit of $f(Q)$ as Q approaches P and Norman does not.

So Norman gets to choose $\epsilon>0$. Once Norman has chosen $\epsilon>0$, Larry has to choose $\delta>0$. The smaller that Norman chooses $\epsilon>0$,
the harder Larry has to work (typically he will have to make a choice of $\delta>0$ very small).

Proposition 8.8. Let $f: A \longrightarrow \mathbb{R}^{m}$ and $g: A \longrightarrow \mathbb{R}^{m}$ be two functions. Let $\lambda \in \mathbb{R}$ be a scalar. If P is a limit point of A and

$$
\lim _{Q \rightarrow P} f(Q)=L \quad \text { and } \quad \lim _{Q \rightarrow P} g(Q)=M
$$

then
(1) $\lim _{Q \rightarrow P}(f+g)(Q)=L+M$, and
(2) $\lim _{Q \rightarrow P}(\lambda f)(Q)=\lambda L$.

Now suppose that $m=1$.
(3) $\lim _{Q \rightarrow P}(f g)(Q)=L M$, and
(4) if $M \neq 0$, then $\lim _{Q \rightarrow P}(f / g)(Q)=L / M$.

Proof. We just prove (1). Suppose that $\epsilon>0$. As L and M are limits, we may find δ_{1} and δ_{2} such that, if $\|Q-P\|<\delta_{1}$ and $Q \in A$, then $\|f(Q)-L\|<\epsilon / 2$ and if $\|Q-P\|<\delta_{2}$ and $Q \in A$, then $\|g(Q)-L\|<$ $\epsilon / 2$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. If $\|Q-P\|<\delta$ and $Q \in A$, then

$$
\begin{aligned}
\|(f+g)(Q)-L-M\| & =\|(f(Q)-L)+(g(Q)-M)\| \\
& \leq\|(f(Q)-L)\|+\|(g(Q)-M)\| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon,
\end{aligned}
$$

where we applied the triangle inequality to get from the second line to the third line. This is (1). (2-4) have similar proofs.

Definition 8.9. Let $A \subset \mathbb{R}^{n}$ and let $P \in A$. If $f: A \longrightarrow \mathbb{R}^{m}$ is a function, then we say that f is continuous at P, if

$$
\lim _{Q \rightarrow P} f(Q)=f(P)
$$

We say that f is continuous, if it continuous at every point of A.
Theorem 8.10. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is a polynomial function, then f is continuous.

A similar result holds if f is a rational function (a quotient of two polynomials).

Example 8.11. $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ given by $f(x, y)=x^{2}+y^{2}$ is continuous.
Sometimes Larry is very lucky:

Example 8.12. Does the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x-y},
$$

exist? Here the domain of f is

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq y\right\} .
$$

Note $(0,0)$ is a limit point of A. Note that if $(x, y) \in A$, then

$$
\frac{x^{2}-y^{2}}{x-y}=x+y,
$$

so that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x-y}=\lim _{(x, y) \rightarrow(0,0)} x+y=0 .
$$

So the limit does exist.
Norman likes the following result:
Proposition 8.13. Let $A \subset \mathbb{R}^{n}$ and let $B \subset \mathbb{R}^{m}$. Let $f: A \longrightarrow B$ and $g: B \longrightarrow \mathbb{R}^{l}$.

Suppose that P is a limit point of A, L is a limit point of B and

$$
\lim _{Q \rightarrow P} f(Q)=L \quad \text { and } \quad \lim _{M \rightarrow L} g(M)=E .
$$

Then

$$
\lim _{Q \rightarrow P}(g \circ f)(Q)=E .
$$

Proof. Let $\epsilon>0$. We may find $\delta>0$ such that if $\|M-L\|<\delta$, and $M \in B$, then $\|g(M)-E\|<\epsilon$. Given $\delta>0$ we may find $\eta>0$ such that if $\|Q-P\|<\eta$ and $Q \in A$, then $\mid f(Q)-L \|<\eta$. But then if $\|Q-P\|<\eta$ and $Q \in A$, then $M=f(Q) \in B$ and $\|M-L\|<\delta$, so that

$$
\begin{aligned}
\|(g \circ f)(Q)-E\| & =\|g(f(Q))-E\| \\
& =\|g(M)-E\| \\
& <\epsilon .
\end{aligned}
$$

Example 8.14. Does

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

exist? The answer is no.
To show that the answer is no, we suppose that the limit exists. Suppose we consider restricting to the x-axis. Let

$$
f: \mathbb{R} \underset{3}{\longrightarrow} \mathbb{R}^{2}
$$

be given by $t \longrightarrow(t, 0)$. As f is continuous, if we compose we must get a function with a limit,

$$
\lim _{t \rightarrow 0} \frac{0}{t^{2}+0}=\lim _{t \rightarrow 0} 0=0
$$

Now suppose that we restrict to the line $y=x$. Now consider the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^{2}
$$

be given by $t \longrightarrow(t, t)$. As f is continuous, if we compose we must get a function with a limit,

$$
\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}+t^{2}}=\lim _{t \rightarrow 0} \frac{1}{2}=\frac{1}{2} .
$$

The problem is that the limit along two different lines is different. So the original limit cannot exist.

Example 8.15. Does the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}},
$$

exist? Let us use polar coordinates. Note that

$$
\frac{x^{3}}{x^{2}+y^{2}}=\frac{r^{3} \cos ^{3} \theta}{r^{2}}=r \cos ^{3} \theta
$$

So we guess the limit is zero.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{3}}{x^{2}+y^{2}}\right| & =\lim _{r \rightarrow 0}\left|r \cos ^{3} \theta\right| \\
& \leq \lim _{r \rightarrow 0}|r|=0
\end{aligned}
$$

Example 8.16. Does the limit

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}},
$$

exist? Same trick, but now let us use spherical coordinates.

$$
\begin{aligned}
\lim _{(x, y, z) \rightarrow(0,0,0)}\left|\frac{x y z}{x^{2}+y^{2}+z^{2}}\right| & =\lim _{\rho \rightarrow 0}\left|\frac{\rho^{3} \cos ^{2} \phi \sin \phi \cos \theta \sin \theta}{\rho^{2}}\right| \\
& =\lim _{\rho \rightarrow 0}\left|\rho \cos ^{2} \phi \sin \phi \cos \theta \sin \theta\right| \\
& \leq \lim _{\rho \rightarrow 0}|\rho|=0 .
\end{aligned}
$$

Sometimes Norman needs to restrict to more complicated curves than just lines:

Example 8.17. Does the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y}{y+x^{2}},
$$

exist? If we restrict to the line $t \longrightarrow(a t, b t)$, then we get

$$
\lim _{t \rightarrow 0} \frac{b t}{b t+a^{2} t^{2}}=\lim _{t \rightarrow 0} \frac{b}{b+a t}=1
$$

But if we restrict to the conic $t \longrightarrow\left(t, a t^{2}\right)$, then we get

$$
\lim _{t \rightarrow 0} \frac{a t^{2}}{a t^{2}+t^{2}}=\lim _{t \rightarrow 0} \frac{a}{1+a}=\frac{a}{1+a},
$$

and the limit changes as we vary a, so that the limit does not exist.
Note that if we start with

$$
\frac{y}{y+x^{d}},
$$

then Norman even needs to use curves of degree d,

$$
t \longrightarrow\left(t, a t^{d}\right) .
$$

