34. Forms on \mathbb{R}^{n}

Definition 34.1. A basic 1-form on \mathbb{R}^{n} is a formal symbol

$$
d x_{1}, d x_{2}, \ldots, d x_{n}
$$

A general 1-form on \mathbb{R}^{n} is any expression of the form

$$
\omega=f_{1} \mathrm{~d} x_{1}+f_{2} \mathrm{~d} x_{2}+\cdots+f_{n} \mathrm{~d} x_{n}
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ are smooth functions.
Note that there are n basic 1 -forms. If f is a smooth function, we get a 1 -form using the formal rule,

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i} .
$$

Definition 34.2. A basic 2-form on \mathbb{R}^{n} is any formal symbol

$$
\mathrm{d} x_{i} \wedge \mathrm{~d} x_{j}
$$

where $1 \leq i<j \leq n$. A general 2-form on \mathbb{R}^{n} is any expression of the form

$$
\omega=\sum_{i<j} f_{i j} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ are smooth functions.
Note that there are

$$
\binom{n}{2}=\frac{n(n-1)}{2},
$$

basic 2 -forms. 2-forms satisfy the following formal rule,

$$
d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}
$$

Given two 1-forms,
$\omega=f_{1} \mathrm{~d} x_{1}+f_{2} \mathrm{~d} x_{2}+\cdots+f_{n} \mathrm{~d} x_{n} \quad$ and $\quad \eta=g_{1} \mathrm{~d} x_{1}+g_{2} \mathrm{~d} x_{2}+\cdots+g_{n} \mathrm{~d} x_{n}$, we can multiply, using linearity and skew-commutativity, to get a 2 form

$$
\omega \wedge \eta=\sum_{i<j}\left(f_{i} g_{j}-f_{j} g_{i}\right) \mathrm{d} x_{i} \wedge \mathrm{~d} x_{j}
$$

Notice how, using skew-commutativity, we can write everything in terms of basic 2 -forms. Note also that skew-commutativity forces

$$
\mathrm{d} x_{i} \wedge \mathrm{~d} x_{i}=0
$$

More generally:

Definition 34.3. A basic k-form on \mathbb{R}^{n} is a formal symbol

$$
d x_{i_{1}} \wedge d x_{i_{2}} \wedge \ldots d x_{i_{k}}
$$

where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ A general k-form on \mathbb{R}^{n} is any expression of the form

$$
\omega=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} f_{i_{1} i_{2} \ldots i_{k}} \mathrm{~d} x_{i_{1}} \wedge \mathrm{~d} x_{i_{2}} \wedge \ldots \mathrm{~d} x_{i_{k}}
$$

where $f_{i_{1} i_{2} \ldots i_{k}}$ are smooth functions.
Note that there are

$$
\binom{n}{k}
$$

basic n-forms.
Suppose we start with a general 1-form in \mathbb{R}^{3},

$$
\omega=f_{1} \mathrm{~d} x+f_{2} \mathrm{~d} y+f_{3} \mathrm{~d} z
$$

We can formally define a 2 -form $\mathrm{d} \omega$ as follows:

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d}\left(f_{1} \mathrm{~d} x+f_{2} \mathrm{~d} y+f_{3} \mathrm{~d} z\right) \\
& =\mathrm{d} f_{1} \wedge \mathrm{~d} x+\mathrm{d} f_{2} \wedge \mathrm{~d} y+\mathrm{d} f_{3} \wedge \mathrm{~d} z \\
& =\left(\frac{\partial f_{1}}{\partial x} \mathrm{~d} x+\frac{\partial f_{1}}{\partial y} \mathrm{~d} y+\frac{\partial f_{1}}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} x \\
& +\left(\frac{\partial f_{2}}{\partial x} \mathrm{~d} x+\frac{\partial f_{2}}{\partial y} \mathrm{~d} y+\frac{\partial f_{2}}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} y \\
& +\left(\frac{\partial f_{3}}{\partial x} \mathrm{~d} x+\frac{\partial f_{3}}{\partial y} \mathrm{~d} y+\frac{\partial f_{3}}{\partial z} \mathrm{~d} z\right) \wedge \mathrm{d} z \\
& =\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \mathrm{d} x \wedge \mathrm{~d} y+\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \mathrm{d} x \wedge \mathrm{~d} z+\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \mathrm{d} y \wedge \mathrm{~d} z
\end{aligned}
$$

Note also that if

$$
\omega=f_{12} \mathrm{~d} x \wedge \mathrm{~d} y+f_{13} \mathrm{~d} x \wedge \mathrm{~d} z+f_{23} \mathrm{~d} y \wedge \mathrm{~d} z
$$

then we can formally define a 3 -form $\mathrm{d} \omega$ as follows:

$$
\begin{aligned}
\mathrm{d} \omega & =\mathrm{d}\left(f_{12} \mathrm{~d} x \wedge \mathrm{~d} y+f_{13} \mathrm{~d} x \wedge \mathrm{~d} z+f_{23} \mathrm{~d} y \wedge \mathrm{~d} z,\right) \\
& =\left(\frac{\partial f_{12}}{\partial z}-\frac{\partial f_{13}}{\partial y}+\frac{\partial f_{23}}{\partial x}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z
\end{aligned}
$$

The final interesting formal operation on k-forms is:
Definition 34.4. Let ω be a k-form on \mathbb{R}^{n}. The Hodge star operator assigns an $(n-k)$-form $* \omega$ to ω, which is defined by the rule:

$$
(* \omega) \wedge \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \cdots \wedge \mathrm{~d} x_{n} .
$$

Let's figure out what the Hodge star operator does in \mathbb{R}^{3}. Suppose that

$$
\omega=\mathrm{d} x \wedge \mathrm{~d} y
$$

Then $\eta=* \omega$ is a 1 -form such that

$$
\eta \wedge \omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z
$$

It follows that $\eta=\mathrm{d} z$. Similarly

$$
*(\mathrm{~d} x \wedge \mathrm{~d} z)=-\mathrm{d} y \quad \text { and } \quad *(\mathrm{~d} y \wedge \mathrm{~d} z=\mathrm{d} x)
$$

Let

$$
\omega=f_{1} \mathrm{~d} x+f_{2} \mathrm{~d} y+f_{3} \mathrm{~d} z
$$

Putting all of this together, we see that

$$
\begin{aligned}
* \mathrm{~d} \omega & =* \mathrm{~d}\left(f_{1} \mathrm{~d} x+f_{2} \mathrm{~d} y+f_{3} \mathrm{~d} z\right) \\
& =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \mathrm{d} x-\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \mathrm{d} y+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \mathrm{d} z
\end{aligned}
$$

Similarly

$$
\begin{aligned}
* \mathrm{~d} * \omega & =* \mathrm{~d} *\left(f_{1} \mathrm{~d} x+f_{2} \mathrm{~d} y+f_{3} \mathrm{~d} z\right) \\
& =* \mathrm{~d}\left(f_{1} \mathrm{~d} y \wedge \mathrm{~d} z-f_{2} \mathrm{~d} x \wedge \mathrm{~d} z+f_{3} \mathrm{~d} x \wedge \mathrm{~d} y\right) \\
& =*\left(\frac{\partial f_{3}}{\partial z}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{1}}{\partial x}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \\
& =\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial x}
\end{aligned}
$$

In other words,

$$
\operatorname{curl}=* d \quad \text { and } \quad \operatorname{div}=* d * .
$$

Note that this points to a way to unify the various versions of the fundamental theorem of calculus for surfaces and threefolds (namely, the theorems of Green, Stokes and Gauss). One can also use this notation to express Maxwell's equations quite efficiently. But these are both other stories.

