
33. Gauss Theorem

Theorem 33.1 (Gauss’ Theorem). Let M ⊂ R3 be a smooth 3-manifold

with boundary, and let ~F : M −→ R3 be a smooth vector field with com-
pact support.

Then ∫∫∫
M

div ~F dx dy dz =

∫∫
∂M

~F · d~S,

where ∂M is given the outward orientation.

Example 33.2. Three point charges are located at the points P1, P2

and P3. There is an electric field

~E : R3 \ {P1, P2, P3} −→ R3,

which satisfies div ~E = 0.
Suppose there are four closed surfaces S1, S2, S3 and S4. Each Si

divides R3 into two pieces, which we will informally call the inside and
the outside. S1 and S2 and S3 are completely contained in the inside
of S4. The inside of S1 contains the point P1 but neither P2 nor P3,
the inside of S2 contains the point P2 but neither P1 nor P3, and the
inside of S3 contains the point P3 but neither P1 nor P2. The inside
of S4, together with S4, minus the inside of S1, S2 and S3 is a smooth
3-manifold with boundary. We have

∂M = S ′1 q S ′2 q S ′3 q S4.

Recall that primes denote the reverse orientation. (33.1) implies that∫∫
S4

~E · d~S −
∫∫

S1

~E · d~S −
∫∫

S2

~E · d~S −
∫∫

S3

~E · d~S

=

∫∫
S4

~E · d~S +

∫∫
S′

1

~E · d~S +

∫∫
S′

2

~E · d~S +

∫∫
S′

3

~E · d~S

=

∫∫
∂M

~E · d~S

=

∫∫
M

div ~E dx dy dz

= 0.

In other words, we have∫∫
S4

~E · d~S =

∫∫
S1

~E · d~S +

∫∫
S2

~E · d~S +

∫∫
S3

~E · d~S.

Proof of (33.1). The proof (as usual) is divided into three steps.
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Step 1: We first suppose that M = H3, upper half space. Suppose
that we are given a vector field ~G : H3 −→ R3, which is zero outside
some box

K = [−a/2, a/2]× [−b/2, b/2]× [0, c/2].

We calculate:∫∫∫
H3

div ~G du dv dw =

∫ c

0

∫ b

−b

∫ a

−a

(
∂G1

∂u
+
∂G2

∂v
+
∂G1

∂w

)
du dv dw

=

∫ c

0

∫ b

−b

(G1(a, v, w)−G1(−a, v, w)) dv dw

+

∫ c

0

∫ a

−a

(G2(u, b, w)−G2(u,−b, w)) du dw

+

∫ b

−b

∫ a

−a

(G3(u, v, c)−G3(u, v, 0)) du dw

= −
∫ b

−b

∫ a

−a

G3(u, v, 0) du dw.

On the other hand, let’s parametrise the boundary ∂H3, by

~g : R2 −→ ∂H3,

where
~g(u, v) = (u, v, 0).

In this case
∂~g

∂u
× ∂~g

∂v
= ı̂× ̂ = k̂.

It follows that∫∫
(∂H2)′

~G · d~S =

∫∫
R2

~G · k̂ du dv

=

∫ b

−b

∫ a

−a

G3(u, v, 0) du dv.

Therefore ∫∫
∂H2

~G · d~S =

∫∫
(∂H2)′

~G · d~S

= −
∫ b

−b

∫ a

−a

G3(u, v, 0) du dv.

Putting all of this together, we have∫∫∫
H3

div ~G du dv dw =

∫∫
∂H2

~G · d~S.

This completes step 1.
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Step 2: We suppose that there is a compact subset K ⊂ M and a
parametrisation

~g : H3 ∩ U −→M ∩W,
such that

(1) ~F (~x) = ~0 for any ~x ∈M \K.
(2) K ⊂M ∩W .

We may write

~g(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)).

Define
~G : H3 −→ R3,

by

G1 = F1
∂(y, z)

∂(v, w)
− F2

∂(x, z)

∂(v, w)
+ F3

∂(x, y)

∂(v, w)

G2 = −F1
∂(y, z)

∂(u,w)
+ F2

∂(x, z)

∂(u,w)
− F3

∂(x, y)

∂(u,w)

G3 = F1
∂(y, z)

∂(u, v)
− F2

∂(x, z)

∂(u, v)
+ F3

∂(x, y)

∂(u, v)
,

for any (u, v, w) ∈ V and otherwise zero. Put differently,

~G(u, v, w) =

{
~F · A if (u, v, w) ∈ U
~0 otherwise,

where A is the matrix of cofactors of the derivative D~g.
One can check (that is, there is a somewhat long and involved cal-

culation, similar, but much worse, than ones that appear in the proof
of Green’s Theorem or Stokes’ Theorem) that

div ~G = div ~F detD~g

= div ~F
∂(x, y, z)

∂(u, v, w)
.

We have ∫∫∫
M

div ~F dx dy dz =

∫∫∫
H3

div ~G dx dy dz

=

∫∫
∂H2

~G · d~S,

=

∫∫
∂M

~F · d~S,
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where the last equality needs to be checked (this is relatively straight-
forward).

This completes step 2.
Step 3: We finish off in the standard way. We may find a partition

of unity

1 =
k∑

i=1

ρi,

where ρi is a smooth function which is zero outside a compact subset
Ki such that ~Fi = ρi

~F is a smooth vector field, which satisfies the
hypothesis of step 2, for each 1 ≤ i ≤ k. We have

~F =
k∑

i=1

~Fi.

and so ∫∫
S

curl ~F · d~S =
k∑

i=1

∫∫
S

curl ~Fi · d~S

=
k∑

i=1

∫
∂M

~Fi · d~s

=

∫
∂M

~F · d~s. �
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