33. Gauss Theorem

Theorem 33.1 (Gauss' Theorem). Let $M \subset \mathbb{R}^{3}$ be a smooth 3-manifold with boundary, and let $\vec{F}: M \longrightarrow \mathbb{R}^{3}$ be a smooth vector field with compact support.

Then

$$
\iiint_{M} \operatorname{div} \vec{F} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\iint_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{S}
$$

where ∂M is given the outward orientation.
Example 33.2. Three point charges are located at the points P_{1}, P_{2} and P_{3}. There is an electric field

$$
\vec{E}: \mathbb{R}^{3} \backslash\left\{P_{1}, P_{2}, P_{3}\right\} \longrightarrow \mathbb{R}^{3}
$$

which satisfies $\operatorname{div} \vec{E}=0$.
Suppose there are four closed surfaces S_{1}, S_{2}, S_{3} and S_{4}. Each S_{i} divides \mathbb{R}^{3} into two pieces, which we will informally call the inside and the outside. S_{1} and S_{2} and S_{3} are completely contained in the inside of S_{4}. The inside of S_{1} contains the point P_{1} but neither P_{2} nor P_{3}, the inside of S_{2} contains the point P_{2} but neither P_{1} nor P_{3}, and the inside of S_{3} contains the point P_{3} but neither P_{1} nor P_{2}. The inside of S_{4}, together with S_{4}, minus the inside of S_{1}, S_{2} and S_{3} is a smooth 3-manifold with boundary. We have

$$
\partial M=S_{1}^{\prime} \amalg S_{2}^{\prime} \amalg S_{3}^{\prime} \amalg S_{4} .
$$

Recall that primes denote the reverse orientation. (33.1) implies that

$$
\begin{aligned}
& \iint_{S_{4}} \vec{E} \cdot \mathrm{~d} \vec{S}-\iint_{S_{1}} \vec{E} \cdot \mathrm{~d} \vec{S}-\iint_{S_{2}} \vec{E} \cdot \mathrm{~d} \vec{S}-\iint_{S_{3}} \vec{E} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{S_{4}} \vec{E} \cdot \mathrm{~d} \vec{S}+\iint_{S_{1}^{\prime}} \vec{E} \cdot \mathrm{~d} \vec{S}+\iint_{S_{2}^{\prime}} \vec{E} \cdot \mathrm{~d} \vec{S}+\iint_{S_{3}^{\prime}} \vec{E} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{\partial M} \vec{E} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{M} \operatorname{div} \vec{E} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =0
\end{aligned}
$$

In other words, we have

$$
\iint_{S_{4}} \vec{E} \cdot \mathrm{~d} \vec{S}=\iint_{S_{1}} \vec{E} \cdot \mathrm{~d} \vec{S}+\iint_{S_{2}} \vec{E} \cdot \mathrm{~d} \vec{S}+\iint_{S_{3}} \vec{E} \cdot \mathrm{~d} \vec{S}
$$

Proof of (33.1). The proof (as usual) is divided into three steps.

Step 1: We first suppose that $M=\mathbb{H}^{3}$, upper half space. Suppose that we are given a vector field $\vec{G}: \mathbb{H}^{3} \longrightarrow \mathbb{R}^{3}$, which is zero outside some box

$$
K=[-a / 2, a / 2] \times[-b / 2, b / 2] \times[0, c / 2]
$$

We calculate:

$$
\begin{aligned}
\iiint_{\mathbb{H}^{3}} \operatorname{div} \vec{G} \mathrm{~d} u \mathrm{~d} v \mathrm{~d} w & =\int_{0}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(\frac{\partial G_{1}}{\partial u}+\frac{\partial G_{2}}{\partial v}+\frac{\partial G_{1}}{\partial w}\right) \mathrm{d} u \mathrm{~d} v \mathrm{~d} w \\
& =\int_{0}^{c} \int_{-b}^{b}\left(G_{1}(a, v, w)-G_{1}(-a, v, w)\right) \mathrm{d} v \mathrm{~d} w \\
& +\int_{0}^{c} \int_{-a}^{a}\left(G_{2}(u, b, w)-G_{2}(u,-b, w)\right) \mathrm{d} u \mathrm{~d} w \\
& +\int_{-b}^{b} \int_{-a}^{a}\left(G_{3}(u, v, c)-G_{3}(u, v, 0)\right) \mathrm{d} u \mathrm{~d} w \\
& =-\int_{-b}^{b} \int_{-a}^{a} G_{3}(u, v, 0) \mathrm{d} u \mathrm{~d} w
\end{aligned}
$$

On the other hand, let's parametrise the boundary $\partial \mathbb{H}^{3}$, by

$$
\vec{g}: \mathbb{R}^{2} \longrightarrow \partial \mathbb{H}^{3}
$$

where

$$
\vec{g}(u, v)=(u, v, 0)
$$

In this case

$$
\frac{\partial \vec{g}}{\partial u} \times \frac{\partial \vec{g}}{\partial v}=\hat{\imath} \times \hat{\jmath}=\hat{k} .
$$

It follows that

$$
\begin{aligned}
\iint_{\left(\partial \mathbb{H}^{2}\right)^{\prime}} \vec{G} \cdot \mathrm{~d} \vec{S} & =\iint_{\mathbb{R}^{2}} \vec{G} \cdot \hat{k} \mathrm{~d} u \mathrm{~d} v \\
& =\int_{-b}^{b} \int_{-a}^{a} G_{3}(u, v, 0) \mathrm{d} u \mathrm{~d} v .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\iint_{\partial H^{2}} \vec{G} \cdot \mathrm{~d} \vec{S} & =\iint_{\left(\partial H^{2}\right)^{\prime}} \vec{G} \cdot \mathrm{~d} \vec{S} \\
& =-\int_{-b}^{b} \int_{-a}^{a} G_{3}(u, v, 0) \mathrm{d} u \mathrm{~d} v .
\end{aligned}
$$

Putting all of this together, we have

$$
\iiint_{\mathbb{H}^{3}} \operatorname{div} \vec{G} \mathrm{~d} u \mathrm{~d} v \mathrm{~d} w=\iint_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} \vec{S} .
$$

This completes step 1.

Step 2: We suppose that there is a compact subset $K \subset M$ and a parametrisation

$$
\vec{g}: \mathbb{H}^{3} \cap U \longrightarrow M \cap W
$$

such that
(1) $\vec{F}(\vec{x})=\overrightarrow{0}$ for any $\vec{x} \in M \backslash K$.
(2) $K \subset M \cap W$.

We may write

$$
\vec{g}(u, v, w)=(x(u, v, w), y(u, v, w), z(u, v, w)) .
$$

Define

$$
\vec{G}: \mathbb{H}^{3} \longrightarrow \mathbb{R}^{3}
$$

by

$$
\begin{aligned}
& G_{1}=F_{1} \frac{\partial(y, z)}{\partial(v, w)}-F_{2} \frac{\partial(x, z)}{\partial(v, w)}+F_{3} \frac{\partial(x, y)}{\partial(v, w)} \\
& G_{2}=-F_{1} \frac{\partial(y, z)}{\partial(u, w)}+F_{2} \frac{\partial(x, z)}{\partial(u, w)}-F_{3} \frac{\partial(x, y)}{\partial(u, w)} \\
& G_{3}=F_{1} \frac{\partial(y, z)}{\partial(u, v)}-F_{2} \frac{\partial(x, z)}{\partial(u, v)}+F_{3} \frac{\partial(x, y)}{\partial(u, v)},
\end{aligned}
$$

for any $(u, v, w) \in V$ and otherwise zero. Put differently,

$$
\vec{G}(u, v, w)= \begin{cases}\vec{F} \cdot A & \text { if }(u, v, w) \in U \\ \overrightarrow{0} & \text { otherwise }\end{cases}
$$

where A is the matrix of cofactors of the derivative $D \vec{g}$.
One can check (that is, there is a somewhat long and involved calculation, similar, but much worse, than ones that appear in the proof of Green's Theorem or Stokes' Theorem) that

$$
\begin{aligned}
\operatorname{div} \vec{G} & =\operatorname{div} \vec{F} \operatorname{det} D \vec{g} \\
& =\operatorname{div} \vec{F} \frac{\partial(x, y, z)}{\partial(u, v, w)}
\end{aligned}
$$

We have

$$
\begin{aligned}
\iiint_{M} \operatorname{div} \vec{F} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\iiint_{\mathbb{H}^{3}} \operatorname{div} \vec{G} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\iint_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{S}
\end{aligned}
$$

where the last equality needs to be checked (this is relatively straightforward).

This completes step 2.
Step 3: We finish off in the standard way. We may find a partition of unity

$$
1=\sum_{i=1}^{k} \rho_{i},
$$

where ρ_{i} is a smooth function which is zero outside a compact subset K_{i} such that $\vec{F}_{i}=\rho_{i} \vec{F}$ is a smooth vector field, which satisfies the hypothesis of step 2 , for each $1 \leq i \leq k$. We have

$$
\vec{F}=\sum_{i=1}^{k} \vec{F}_{i} .
$$

and so

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S} & =\sum_{i=1}^{k} \iint_{S} \operatorname{curl} \vec{F}_{i} \cdot \mathrm{~d} \vec{S} \\
& =\sum_{i=1}^{k} \int_{\partial M} \vec{F}_{i} \cdot \mathrm{~d} \vec{s} \\
& =\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} .
\end{aligned}
$$

