
32. Stokes Theorem

Definition 32.1. We say that a vector field

~F : A −→ Rm,

has compact support if there is a compact subset K ⊂ A such that

~F (~x) = ~0,

for every ~x ∈ A−K.

If S ⊂ R3 is a smooth manifold (possibly with boundary) then we
will call S a surface. An orientation is a “continuous” choice of unit
normal vector. Not every surface can be oriented. Consider for example
the Möbius band, which is obtained by taking a piece of paper and
attaching it to itself, except that we add a twist.

Theorem 32.2 (Stokes’ Theorem). Let S ⊂ R3 be a smooth oriented

surface with boundary and let ~F : S −→ R3 be a smooth vector field
with compact support.

Then ∫∫
S

curl ~F · d~S =

∫
∂S

~F · d~s,

where ∂S is oriented compatibly with the orientation on S.

Example 32.3. Let S be a smooth 2-manifold that looks like a pair
of pants. Choose the orientation of S such that the normal vector is
pointing outwards. There are three oriented curves C1, C2 and C3 (the

two legs and the waist). Suppose that we are given a vector field ~B with
zero curvature. Then (32.2) says that∫

C3

~B · d~s+

∫
C′

1

~B · d~s+

∫
C′

2

~B · d~s =

∫∫
S

curl ~B · d~S = 0.

Here C ′1 and C ′2 denote the curves C1 and C2 with the opposite orien-
tation. In other words,∫

C3

~B · d~s =

∫
C1

~B · d~s+

∫
C2

~B · d~s.

Proof of (32.2). We prove this in three steps, in very much the same
way as we proved Green’s Theorem.

Step 1: We suppose that M = H2 ⊂ R2 ⊂ R3, where the plane is
the xy-plane. In this case, we can take n̂ = k̂, and this induces the
standard orientation of the boundary. Note that

curl ~F · n̂ =
∂F2

∂x
− ∂F1

∂y
,
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and so the result reduces to Green’s Theorem. This completes step 1.
Step 2: We suppose that there is a compact subset K ⊂ S and a

parametrisation

~g : H2 ∩ U −→ S ∩W,
which is compatible with the orientation, such that

(1) ~F (~x) = ~0 if ~x ∈ S −K, and
(2) K ⊂ S ∩W .

Define a vector field ~G : H2 −→ R2 by the rule

~G(u, v) =

{
~F (~g(u, v)) ·D~g(u, v) (u, v) ∈ U
~0 (u, v) /∈ U.

Note that

G1(u, v) = F1
∂x

∂u
+ F2

∂y

∂u
+ F3

∂z

∂u

G2(u, v) = F1
∂x

∂v
+ F2

∂y

∂v
+ F3

∂z

∂v
.

Using step 1, it is enough to prove:

Claim 32.4.

(1) ∫∫
S

curl ~F .d~S =

∫∫
H2

(
∂G2

∂u
− ∂G1

∂v

)
du dv.

(2) ∫∫
∂S

~F · d~s =

∫∫
∂H2

~G · ds.

Proof of (32.4). Note that

curl ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
ı̂−
(
∂F3

∂x
− ∂F1

∂z

)
̂+

(
∂F2

∂x
− ∂F1

∂y

)
k̂.

On the other hand,

∂~g

∂u
=
∂x

∂u
ı̂+

∂y

∂u
̂+

∂z

∂u
k̂

∂~g

∂v
=
∂x

∂v
ı̂+

∂y

∂v
̂+

∂z

∂v
k̂.
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It follows that

∂~g

∂u
× ∂~g

∂v
=

∣∣∣∣∣∣
ı̂ ̂ k̂

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∣∣∣∣∣∣
=
∂(y, z)

∂(u, v)
ı̂− ∂(x, z)

∂(u, v)
̂+

∂(x, y)

∂(u, v)
k̂.

So,

curl ~F ·∂~g
∂u
×∂~g
∂v

=

(
∂F3

∂y
− ∂F2

∂z

)
∂(y, z)

∂(u, v)
+

(
∂F3

∂x
− ∂F1

∂z

)
∂(x, z)

∂(u, v)
+

(
∂F2

∂x
− ∂F1

∂y

)
∂(x, y)

∂(u, v)
.

On the other hand, if one looks at the proof of the second step of
Green’s theorem, we see that

∂G2

∂u
− ∂G1

∂v
,

is also equal to the RHS (in fact, what we calculated in the proof of
Green’s theorem was the third term of the RHS; by symmetry the other
two terms have the same form). This is (1).

For (2), let’s parametrise ∂H2 ∩ U by ~x(u) = (u, 0) and ∂S ∩W by
~s(u) = ~g(~x(u)). Then∫

∂S

~F · d~s =

∫
∂S∩W

~F · d~s

=

∫ b

a

~F (~s(u)) · ~s′(u) du

=

∫ b

a

~F (~g(~x(u))) ·D~g(~x(u))~x′(u) du

=

∫ b

a

~G(~x(u)) · ~x′(u) du

=

∫
∂H2∩U

~G. · d~s

=

∫
∂H2

~G. · d~s,

and this is (2). �

This completes step 2.
Step 3: We again use partitions of unity. It is straightforward to

cover the bounded setK by finitely many compact subsetsK1, K2, . . . , Kk,
such that given any smooth vector field which is zero outside Ki, then
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the conditions of step 2 hold. By using a partition of unity, we can find
smooth functions ρ1, ρ2, . . . , ρk such that ρi is zero outside Ki and

1 =
k∑

i=1

ρi.

Multiplying both sides of this equation by ~F , we have

~F =
k∑

i=1

~Fi,

where ~Fi = ρi
~F is a smooth vector field, which is zero outside Ki. In

this case ∫∫
S

curl ~F · d~S =
k∑

i=1

∫∫
S

curl ~Fi · d~S

=
k∑

i=1

∫
∂M

~Fi · d~s

=

∫
∂M

~F · d~s. �
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