## 31. Flux

Let $S \subset \mathbb{R}^{3}$ be a smooth 2-manifold and let

$$
\vec{g}: U \longrightarrow S \cap W
$$

be a diffeomorphism.
Definition 31.1. Let $f: S \cap W \longrightarrow \mathbb{R}$ and $\vec{F}: S \cap W \longrightarrow \mathbb{R}^{3}$ be two functions, the first a scalar function and the second a vector field. We define

$$
\begin{aligned}
\iint_{S \cap W} f \mathrm{~d} S & =\iint_{S \cap W} f(g(s, t))\left\|\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}\right\| \mathrm{d} s \mathrm{~d} t \\
\iint_{S \cap W} \vec{F} \cdot \mathrm{~d} \vec{S} & =\iint_{S \cap W} \vec{F}(g(s, t)) \cdot\left(\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}\right) \mathrm{d} s \mathrm{~d} t .
\end{aligned}
$$

The second integral is called the flux of $\vec{F}$ across $S$ in the direction of

$$
\hat{n}=\frac{\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}}{\left\|\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}\right\|}
$$

Note that

$$
\iint_{S \cap W} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{S \cap W}(\vec{F} \cdot \hat{n}) \mathrm{d} \vec{S} .
$$

Note also that one can define the line integral of $f$ and $\vec{F}$ over the whole of $S$ using partitions of unity.

Example 31.2. Find the flux of the vector field given by

$$
\vec{F}(x, y, z)=y \hat{\imath}+z \hat{\jmath}+x \hat{k},
$$

through the triangle $S$ with vertices

$$
P_{0}=(1,2,-1) \quad P_{1}=(2,1,1) \quad \text { and } \quad P_{2}=(3,-1,2),
$$

in the direction of

$$
\hat{n}=\frac{\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}}{\left\|\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right\|}
$$

First we parametrise $S$,

$$
\vec{g}: U \longrightarrow S \cap W
$$

where
$g(s, t)=\overrightarrow{O P_{0}}+s \overrightarrow{P_{0} P_{1}}+t \overrightarrow{P_{0} P_{2}}=(1+s+2 t, 2-s-3 t,-1+2 s+3 t)$, and

$$
U=\left\{(s, t) \in \mathbb{R}^{2} \mid 0<s<1,0<t<1-s\right\}
$$

and $W$ is the whole of $\mathbb{R}^{3}$ minus the three lines $P_{0} P_{1}, P_{1} P_{2}$ and $P_{2} P_{0}$. Now

$$
\frac{\partial \vec{g}}{\partial s}=\overrightarrow{P_{0} P_{1}}=(1,-1,2) \quad \text { and } \quad \frac{\partial \vec{g}}{\partial t}=\overrightarrow{P_{0} P_{2}}=(2,-3,3)
$$

and so

$$
\begin{aligned}
\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -1 & 2 \\
2 & -3 & 3
\end{array}\right| \\
& =3 \hat{\imath}+\hat{\jmath}-\hat{k} .
\end{aligned}
$$

Clearly, $\hat{n}$ and $\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}$ have the same direction.

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S} & =\iint_{S \cap W} \vec{F} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{U} \vec{F}(\vec{g}(s, t)) \cdot\left(\frac{\partial \vec{g}}{\partial s} \times \frac{\partial \vec{g}}{\partial t}\right) \mathrm{d} s \mathrm{~d} t \\
& =\int_{0}^{1} \int_{0}^{1-s}(2-s-3 t,-1+2 s+3 t, 1+s+2 t) \cdot(3,1,-1) \mathrm{d} t \mathrm{~d} s \\
& =\int_{0}^{1} \int_{0}^{1-s}(6-3 s-9 t-1+2 s+3 t-1-s-2 t) \mathrm{d} t \mathrm{~d} s \\
& =\int_{0}^{1} \int_{0}^{1-s}(4-2 s-8 t) \mathrm{d} t \mathrm{~d} s \\
& =\int_{0}^{1}\left[4 t-2 s t-4 t^{2}\right]_{0}^{1-s} \mathrm{~d} s \\
& =\int_{0}^{1}\left(4(1-s)-2 s(1-s)-4(1-s)^{2}\right) \mathrm{d} s \\
& =\int_{0}^{1}\left(2 s-2 s^{2}\right) \mathrm{d} s \\
& =\left[s^{2}-\frac{2 s^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

Example 31.3. Let $S$ be the disk of radius 2 centred around the point $P=(1,1,-2)$ and orthogonal to the vector

$$
\hat{n}=\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)
$$

Find the flux of the vector field given by

$$
\vec{F}(x, y, z)=y \hat{\imath}+z \hat{\jmath}+x \hat{k}
$$

through $S$ in the direction of $\hat{n}$.
First we need to parametrise $S$. We want a right handed triple of unit vectors

$$
(\hat{a}, \hat{b}, \hat{n})
$$

which are pairwise orthogonal, so that they are an orthonormal basis. Let's take

$$
\hat{a}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) .
$$

With this choice, it is clear that

$$
\hat{a} \cdot \hat{n}=0
$$

so that $\hat{a}$ is orthogonal to $\hat{n}$,

$$
\begin{aligned}
\hat{b} & =\hat{n} \times \hat{a} \\
& =\left(\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\jmath} \\
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right) \\
& =-2 / 3 \hat{\imath}+1 / 3 \hat{\jmath}+2 / 3 \hat{k} .
\end{aligned}
$$

This gives us a parametrisation,

$$
\vec{g}: U \longrightarrow S \cap W
$$

given by

$$
\begin{aligned}
g(r, \theta) & =\overrightarrow{O P}+r \cos \theta \hat{a}+r \sin \theta \hat{b} \\
& =(1,1,-2)+(2 r / 3 \cos \theta, 2 r / 3 \cos \theta, r / 3 \cos \theta)+(-2 r / 3 \sin \theta, r / 3 \sin \theta, 2 r / 3 \sin \theta) \\
& =(1+2 r / 3 \cos \theta-2 r / 3 \sin \theta, 1+2 r / 3 \cos \theta+r / 3 \sin \theta,-2+r / 3 \cos \theta+2 r / 3 \sin \theta)
\end{aligned}
$$

where

$$
U=(0,2) \times(0,2 \pi)
$$

and $W$ is the whole of $\mathbb{R}^{3}$ minus the boundary of the disk.
Now

$$
\frac{\partial \vec{g}}{\partial r}=\cos \theta \hat{a}+\sin \theta \hat{b} \quad \text { and } \quad \frac{\partial \vec{g}}{\partial \theta}=-r \sin \theta \hat{a}+r \cos \theta \hat{b}
$$

and so

$$
\begin{aligned}
\frac{\partial \vec{g}}{\partial r} \times \frac{\partial \vec{g}}{\partial \theta} & =(\cos \theta \hat{a}+\sin \theta \hat{b}) \times(-r \sin \theta \hat{a}+r \cos \theta \hat{b}) \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \hat{n}=r \hat{n}
\end{aligned}
$$

Clearly this points in the direction of $\hat{n}$.

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S} & =\iint_{S \cap W} \vec{F} \cdot \mathrm{~d} \vec{S} \\
& =\iint_{U} \vec{F}(\vec{g}(r, \theta)) \cdot\left(\frac{\partial \vec{g}}{\partial r} \times \frac{\partial \vec{g}}{\partial \theta}\right) \mathrm{d} r \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(1+2 r / 3 \cos \theta+r / 3 \sin \theta,-2+r / 3 \cos \theta+2 r / 3 \sin \theta \\
1 & +2 r / 3 \cos \theta-2 r / 3 \sin \theta,) \cdot(r / 3,-2 r / 3,2 r / 3) \mathrm{d} r \mathrm{~d} \theta
\end{aligned}
$$

Now when we expand the integrand, we will clearly get

$$
\alpha+\beta \cos \theta+\gamma \sin \theta,
$$

where $\alpha, \beta$ and $\gamma$ are affine linear functions of $r$ (that is, of the form $m r+b)$. The integral of $\cos \theta$ and $\sin \theta$ over the range $[0,2 \pi]$ is zero. Computing, we get

$$
\alpha=r(1 / 3+4 / 3+2 / 3)=7 r / 3,
$$

so that $\alpha$ is a linear function of $r$. Therefore the integral reduces to

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{2} \frac{7 r}{3} \mathrm{~d} r \mathrm{~d} \theta & =\int_{0}^{2 \pi}\left[\frac{7 r^{2}}{6}\right]_{0}^{2} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \frac{14}{3} \mathrm{~d} \theta \\
& =\frac{28 \pi}{3}
\end{aligned}
$$

