29. Conservative vector fields Revisited

Let $U \subset \mathbb{R}^{2}$ be an open subset. Given a smooth function $f: U \longrightarrow \mathbb{R}$ we get a smooth vector field by taking $\vec{F}=\operatorname{grad} f$. Given a smooth vector field $\vec{F}: U \longrightarrow \mathbb{R}^{2}$ we get a function by taking $f=\operatorname{curl} \vec{F}$.

Suppose that $M \subset U$ is a smooth 2-manifold with boundary. If we start with \vec{F}, then we have

$$
\iint_{M} \operatorname{curl} \vec{F} \mathrm{~d} A=\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} .
$$

Suppose we start with f, and let C be a smooth oriented curve. Pick a parametrisation,

$$
\vec{x}:[a, b] \longrightarrow U,
$$

such that $\vec{x}(a)=P$ and $\vec{x}(b)=Q$. Then we have

$$
\begin{aligned}
\int_{C} \operatorname{grad} f \cdot \mathrm{~d} \vec{s} & =\int_{a}^{b} \operatorname{grad} f(\vec{x}(t)) \cdot \vec{x}^{\prime}(t) \mathrm{d} t \\
& =\int_{a}^{b} \frac{d}{d t} f(\vec{x}(t)) \mathrm{d} t \\
& =f(\vec{x}(b))-f(\vec{x}(a)) \\
& =f(Q)-f(P)
\end{aligned}
$$

Definition 29.1. We say that $X \subset \mathbb{R}^{n}$ is star-shaped with respect to $P \in X$, if given any point $Q \in X$ then the point

$$
P+t \overrightarrow{P Q} \in X
$$

for every $t \in[0,1]$.
In other words, the line segment connecting P to Q belongs to X.
Theorem 29.2. Let $U \subset \mathbb{R}^{2}$ be an open and star-shaped let $\vec{F}: U \longrightarrow$ \mathbb{R}^{2} be a smooth vector field.

The following are equivalent:
(1) $\operatorname{curl} \vec{F}=0$.
(2) $\vec{F}=\operatorname{grad} f$.

Proof. (2) implies (1) is easy.
We check (1) implies (2). Suppose that U is star-shaped with respect to $P=\left(x_{0}, y_{0}\right)$. Parametrise the line L from P to $Q=(x, y)$ as follows $P+t \overrightarrow{P Q}=\left(x_{0}+t\left(x-x_{0}\right), y_{0}+t\left(y-y_{0}\right)\right)=P_{t}, \quad$ for $\quad 0 \leq t \leq 1$.

Define

$$
\begin{aligned}
f(x, y) & =\int_{L} \vec{F} \cdot \mathrm{~d} \vec{s} \\
& =\int_{0}^{1} x F_{1}\left(P_{t}\right)+y F_{2}\left(P_{t}\right) \mathrm{d} t
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\int_{0}^{1} \frac{\partial}{\partial x}\left(x F_{1}\left(x_{0}+t\left(x-x_{0}\right), y_{0}+t\left(y-y_{0}\right)\right)+y F_{2}\left(x_{0}+t\left(x-x_{0}\right), y_{0}+t\left(y-y_{0}\right)\right)\right) \mathrm{d} t \\
& =\int_{0}^{1} F_{1}\left(P_{t}\right)+t x \frac{\partial F_{1}}{\partial x}\left(P_{t}\right)+t y \frac{\partial F_{2}}{\partial x}\left(P_{t}\right) \mathrm{d} t
\end{aligned}
$$

On the other hand,

$$
\frac{\partial}{\partial t}\left(t F_{1}\left(x_{0}+t\left(x-x_{0}\right), y_{0}+t\left(y-y_{0}\right)\right)\right)=F_{1}\left(P_{t}\right)+t x \frac{\partial F_{1}}{\partial t} F_{1}\left(P_{t}\right)+t y \frac{\partial F_{2}}{\partial y}\left(P_{t}\right)
$$

Since curl $\vec{F}=0$, we have

$$
\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}
$$

and so

$$
\frac{\partial f}{\partial x}=\int_{0}^{1} \frac{\partial F_{1}}{\partial t}\left(P_{t}\right) \mathrm{d} t=F_{1}(x, y)
$$

Similarly

$$
\frac{\partial f}{\partial y}=F_{2}(x, y)
$$

It follows that $\vec{F}=\operatorname{grad} f$.
Definition 29.3. Let $\vec{F}: U \longrightarrow \mathbb{R}^{2}$ be a vector field. Define another vector field by the rule

$$
* F: U \longrightarrow \mathbb{R}^{2} \quad \text { where } \quad * F=\left(-F_{2}, F_{1}\right)
$$

Theorem 29.4 (Divergence theorem in the plane). Suppose that $M \subset$ \mathbb{R}^{2} is a smooth 2-manifold with boundary ∂M.

If $\vec{F}: U \longrightarrow \mathbb{R}^{2}$ is a smooth vector field, then

$$
\iint_{M} \operatorname{div} \vec{F} \mathrm{~d} A=\int_{\partial M} \vec{F} \cdot \hat{n} \mathrm{~d} s
$$

where \hat{n} is the unit normal vector of the smooth oriented curve $C=\partial M$ which points out of M.

Proof. Note that

$$
\begin{gathered}
\operatorname{curl}(* \vec{F})=\operatorname{div} \vec{F} \\
* F \cdot \mathrm{~d} \vec{s}=(\vec{F} \cdot \hat{n}) \mathrm{d} s
\end{gathered}
$$

and
and so the result follows from Green's theorem applied to $* \vec{F}$.

