29. Conservative vector fields revisited

Let $U \subset \mathbb{R}^2$ be an open subset. Given a smooth function $f: U \longrightarrow \mathbb{R}$ we get a smooth vector field by taking $\vec{F} = \operatorname{grad} f$. Given a smooth vector field $\vec{F}: U \longrightarrow \mathbb{R}^2$ we get a function by taking $f = \operatorname{curl} \vec{F}$.

Suppose that $M \subset U$ is a smooth 2-manifold with boundary. If we start with \vec{F} , then we have

$$\iint_{M} \operatorname{curl} \vec{F} \, \mathrm{d}A = \int_{\partial M} \vec{F} \cdot \mathrm{d}\vec{s}.$$

Suppose we start with f, and let C be a smooth oriented curve. Pick a parametrisation,

$$\vec{x} \colon [a, b] \longrightarrow U,$$

such that $\vec{x}(a) = P$ and $\vec{x}(b) = Q$. Then we have

$$\int_C \operatorname{grad} f \cdot d\vec{s} = \int_a^b \operatorname{grad} f(\vec{x}(t)) \cdot \vec{x}'(t) dt$$
$$= \int_a^b \frac{d}{dt} f(\vec{x}(t)) dt$$
$$= f(\vec{x}(b)) - f(\vec{x}(a))$$
$$= f(Q) - f(P).$$

Definition 29.1. We say that $X \subset \mathbb{R}^n$ is **star-shaped** with respect to $P \in X$, if given any point $Q \in X$ then the point

$$P + t \overrightarrow{PQ} \in X,$$

for every $t \in [0, 1]$.

In other words, the line segment connecting P to Q belongs to X.

Theorem 29.2. Let $U \subset \mathbb{R}^2$ be an open and star-shaped let $\vec{F} : U \longrightarrow \mathbb{R}^2$ be a smooth vector field.

The following are equivalent:

(1) $\operatorname{curl} \vec{F} = 0.$

(2)
$$\vec{F} = \operatorname{grad} f$$
.

Proof. (2) implies (1) is easy.

We check (1) implies (2). Suppose that U is star-shaped with respect to $P = (x_0, y_0)$. Parametrise the line L from P to Q = (x, y) as follows

$$P + t \overrightarrow{PQ} = (x_0 + t(x - x_0), y_0 + t(y - y_0)) = P_t, \quad \text{for} \quad 0 \le t \le 1.$$

Define

$$f(x,y) = \int_L \vec{F} \cdot d\vec{s}$$
$$= \int_0^1 x F_1(P_t) + y F_2(P_t) dt.$$

Then

$$\frac{\partial f}{\partial x} = \int_0^1 \frac{\partial}{\partial x} \left(xF_1(x_0 + t(x - x_0), y_0 + t(y - y_0)) + yF_2(x_0 + t(x - x_0), y_0 + t(y - y_0)) \right) dt \\ = \int_0^1 F_1(P_t) + tx \frac{\partial F_1}{\partial x}(P_t) + ty \frac{\partial F_2}{\partial x}(P_t) dt.$$

On the other hand,

$$\frac{\partial}{\partial t}\left(tF_1(x_0+t(x-x_0),y_0+t(y-y_0))\right) = F_1(P_t) + tx\frac{\partial F_1}{\partial t}F_1(P_t) + ty\frac{\partial F_2}{\partial y}(P_t).$$

Since $\operatorname{curl} \vec{F} = 0$, we have

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x},$$

and so

$$\frac{\partial f}{\partial x} = \int_0^1 \frac{\partial F_1}{\partial t} (P_t) \, \mathrm{d}t = F_1(x, y).$$

Similarly

$$\frac{\partial f}{\partial y} = F_2(x, y).$$

It follows that $\vec{F} = \operatorname{grad} f$.

Definition 29.3. Let $\vec{F}: U \longrightarrow \mathbb{R}^2$ be a vector field. Define another vector field by the rule

$$*F: U \longrightarrow \mathbb{R}^2$$
 where $*F = (-F_2, F_1).$

Theorem 29.4 (Divergence theorem in the plane). Suppose that $M \subset$ \mathbb{R}^2 is a smooth 2-manifold with boundary ∂M . If $\vec{F}: U \longrightarrow \mathbb{R}^2$ is a smooth vector field, then

$$\iint_{M} \operatorname{div} \vec{F} \, \mathrm{d}A = \int_{\partial M} \vec{F} \cdot \hat{n} \, \mathrm{d}s,$$

where \hat{n} is the unit normal vector of the smooth oriented curve $C = \partial M$ which points out of M.

Proof. Note that

$$\operatorname{curl}(*\vec{F}) = \operatorname{div} \vec{F},$$

and

$$*F \cdot \mathrm{d}\vec{s} = (\vec{F} \cdot \hat{n})\mathrm{d}s,$$

and so the result follows from Green's theorem applied to $*\vec{F}.$