28. Manifolds with boundary

Definition 28.1. Upper half space is the set

$$
\mathbb{H}^{m}=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mid x_{m} \geq 0\right\} \subset \mathbb{R}^{m}
$$

The boundary of \mathbb{H}^{m}, is

$$
\partial \mathbb{H}^{m}=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mid x_{m}=0\right\} \subset \mathbb{M}^{m} .
$$

Definition 28.2. A subset $M \subset \mathbb{R}^{k}$ is a smooth m-manifold with boundary if for every $\vec{a} \in M$ there is an open subset $W \subset \mathbb{R}^{k}$ and an open subset $U \subset \mathbb{R}^{m}$, and a diffeomorphism

$$
\vec{g}: \mathbb{H}^{m} \cap U \longrightarrow M \cap W
$$

The boundary of M is the set of points \vec{a} which map to a point of the boundary of \mathbb{H}^{m}.

Example 28.3. The solid ellipse,

$$
M=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right.\right\}
$$

is a 2-manifold with boundary.
Let

$$
U_{1}=\{(u, v) \mid 0<u<2 \pi,-1<v<1\}
$$

and

$$
W_{1}=\mathbb{R}^{2}-\left\{(x, 0) \in \mathbb{R}^{2} \mid x \geq 0\right\} .
$$

Define a function

$$
\vec{g}_{1}: U_{1} \longrightarrow W_{1},
$$

by the rule

$$
\vec{g}_{1}(u, v)=(a(1-v) \cos u, b(1-v) \sin u) .
$$

Similarly, let

$$
U_{2}=\{(u, v) \mid-\pi<u<\pi,-1<v<1\}
$$

and

$$
W_{2}=\mathbb{R}^{2}-\left\{(x, 0) \in \mathbb{R}^{2} \mid x \leq 0\right\} .
$$

Define a function

$$
\vec{g}_{2}: U_{2} \longrightarrow W_{2},
$$

by the rule

$$
\vec{g}_{2}(u, v)=(a(1-v) \cos u, b(1-v) \sin u)
$$

Finally, let

$$
U_{3}=\left\{(u, v) \mid u_{1}^{2}+(v-b)^{2}<b\right\}
$$

and

$$
W_{3}=\left\{(x, y) \mid x^{2}+y^{2}<b\right\}
$$

Define a function

$$
\vec{g}_{3}: U_{3} \longrightarrow W_{3}
$$

by the rule

$$
\vec{g}_{3}(u, v)=(u, v-b)
$$

Let

$$
\vec{F}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

be the function

$$
\vec{F}(x, y)=(-y, x) .
$$

Then

$$
\begin{aligned}
\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} & =\int_{0}^{2 \pi}(-b \sin t, a \cos t) \cdot(a \cos t, b \sin t) \mathrm{d} t \\
& =\int_{0}^{2 \pi} a b \mathrm{~d} t \\
& =2 \pi a b
\end{aligned}
$$

On the other hand,

$$
\operatorname{curl} \vec{F}=\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=1-(-1)=2
$$

and so

$$
\iint_{M} \operatorname{curl} \vec{F} \mathrm{~d} x \mathrm{~d} y=2 \pi a b .
$$

In fact this is not a coincidence:
Theorem 28.4 (Green's Theorem). Let $M \subset \mathbb{R}^{2}$ be a smooth 2manifold with boundary, and let $\vec{F}: M \longrightarrow \mathbb{R}^{2}$ be a smooth vector field such that

$$
\{(x, y) \in M \mid \vec{F}(x, y) \neq \overrightarrow{0}\} \subset \mathbb{R}^{2}
$$

is a bounded subset.
Then

$$
\iint_{M}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} .
$$

Here ∂M is oriented, so that M is on the left as we go around ∂M (in the positive direction).

Proof. In the first step we assume that

$$
M=\mathbb{H}^{2}=\{(u, v) \mid v \geq 0\} \subset \mathbb{R}^{2}
$$

By assumption we may find a and b such that $\vec{F}=\overrightarrow{0}$ outside the box

$$
[-a / 2, a / 2] \times[0, b / 2] \subset \mathbb{H}^{2}
$$

So $\vec{F}(u, v)=\overrightarrow{0}$ if $u= \pm a$ or $v=b$. Let's calculate the LHS,

$$
\begin{aligned}
\iint_{\mathbb{H}^{2}}\left(\frac{\partial F_{2}}{\partial u}-\frac{\partial F_{1}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v & =\iint_{\mathbb{H}^{2}} \frac{\partial F_{2}}{\partial u} \mathrm{~d} u \mathrm{~d} v-\iint_{\mathbb{H}^{2}} \frac{\partial F_{1}}{\partial v} \mathrm{~d} u \mathrm{~d} v \\
& =\int_{0}^{b} \int_{-a}^{a} \frac{\partial F_{2}}{\partial u} \mathrm{~d} u \mathrm{~d} v-\int_{-a}^{a} \int_{0}^{b} \frac{\partial F_{1}}{\partial v} \mathrm{~d} v \mathrm{~d} u \\
& =\int_{0}^{b} F_{2}(a, v)-F_{2}(-a, v) \mathrm{d} v-\int_{-a}^{a} F_{1}(u, b)-F_{1}(u, 0) \mathrm{d} u \\
& =\int_{-a}^{a} F_{1}(u, 0) \mathrm{d} u .
\end{aligned}
$$

Okay, now let's parametrise the boundary of the upper half plane,

$$
\vec{x}: \mathbb{R} \longrightarrow \partial \mathbb{H}^{2}
$$

by the rule

$$
\vec{x}(u)=(u, 0)
$$

Then

$$
\vec{x}^{\prime}(u)=\hat{\imath} .
$$

Let's calculate the RHS,

$$
\begin{aligned}
\int_{\partial \mathbb{H}^{2}} \vec{F} \cdot \mathrm{~d} \vec{s} & =\int_{-a}^{a} \vec{F}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u \\
& =\int_{-a}^{a} \vec{F}(u, 0) \cdot \hat{\imath} \mathrm{d} u \\
& =\int_{-a}^{a} F_{1}(u, 0) \mathrm{d} u .
\end{aligned}
$$

So the result holds if $M=\mathbb{H}^{2}$. This completes the first step.
In the second step, we suppose that there is a diffeomorphism

$$
\vec{g}: \mathbb{H}^{2} \cap U \longrightarrow M \cap W,
$$

such that for some positive real numbers a and b, we have
(1) $[-a, a] \times[0, b] \subset \mathbb{H}^{2} \cap U$,
(2) $\vec{F}=\overrightarrow{0}$ outside $\vec{g}([-a / 2, a / 2] \times[0, b])$, and
(3) $\operatorname{det} D \vec{g}(u, v)>0$ for every $(u, v) \in \mathbb{H}^{2} \cap U$.

In this case, parametrise $\partial M \cap W$ as follows; define

$$
\vec{s}:(-a, a) \longrightarrow \partial M \cap W,
$$

by the rule

$$
\vec{s}(u)=\vec{g}(\vec{x}(u))=\vec{g}(u, 0) .
$$

Note that this is compatible with the orientation, as we are assuming that the Jacobian of g is positive.

$$
\begin{aligned}
\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} & =\int_{-a}^{a} \vec{F}(\vec{s}(u)) \cdot \vec{s}^{\prime}(u) \mathrm{d} u \\
& =\int_{-a}^{a} \vec{F}(\vec{g}(\vec{x}(u))) D \vec{g}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u \\
& =\int_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} \vec{s},
\end{aligned}
$$

where

$$
\vec{G}: \mathbb{H}^{2} \longrightarrow \mathbb{R}^{2},
$$

is defined by the rule

$$
\vec{G}(u, v)= \begin{cases}\vec{F}(\vec{g}(u, v)) D \vec{g}(u, v) & \text { if }(u, v) \in U \\ \overrightarrow{0} & \text { otherwise }\end{cases}
$$

Now we compute,

$$
\begin{aligned}
\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v} & =\frac{\partial}{\partial u}\left(F_{1} \frac{\partial x}{\partial v}+F_{2} \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(F_{1} \frac{\partial x}{\partial u}+F_{2} \frac{\partial y}{\partial u}\right) \\
& =\left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial u}\right) \frac{\partial x}{\partial v}+F_{1} \frac{\partial^{2} x}{\partial u \partial v} \\
& +\left(\frac{\partial F_{2}}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial F_{2}}{\partial y} \frac{\partial y}{\partial u}\right) \frac{\partial y}{\partial v}+F_{2} \frac{\partial^{2} y}{\partial u \partial v} \\
& -\left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial v}\right) \frac{\partial x}{\partial u}-F_{1} \frac{\partial^{2} x}{\partial v \partial u} \\
& -\left(\frac{\partial F_{2}}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial F_{2}}{\partial y} \frac{\partial y}{\partial v}\right) \frac{\partial y}{\partial u}-F_{2} \frac{\partial^{2} x}{\partial v \partial u} \\
& =\frac{\partial F_{2}}{\partial x}\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial x} \frac{\partial y}{\partial u}\right)-\frac{\partial F_{1}}{\partial y}\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial x} \frac{\partial y}{\partial u}\right) \\
& =\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \frac{\partial(x, y)}{\partial(u, v)} .
\end{aligned}
$$

Using this, we get

$$
\begin{aligned}
\iint_{\mathbb{H}^{2}}\left(\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v & =\iint_{\mathbb{H}^{2} \cap U}\left(\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v \\
& =\iint_{\mathbb{H}^{2} \cap U}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \frac{\partial(x, y)}{\partial(u, v)} \mathrm{d} u \mathrm{~d} v \\
& =\iint_{M \cap W}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{M}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

Putting all of this together, we have

$$
\begin{aligned}
\iint_{M}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y & =\iint_{\mathbb{H}^{2}}\left(\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v \\
& =\int_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} \vec{s} \\
& =\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} .
\end{aligned}
$$

This completes step 2.
We now turn to the third and final step. To complete the proof, we need to invoke the existence of partitions of unity. Starting with \vec{F}, I claim that there are vector finitely many fields $F_{1}, F_{2}, \ldots, F_{k}$, each of which satisfy the hypotheses of step 2 , such that

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\cdots+\vec{F}_{k}=\sum_{i=1}^{k} \vec{F}_{i}
$$

Indeed, start with a partition of unity,

$$
1=\sum_{i=1}^{m} \rho_{i}
$$

multiply both sides by \vec{F}, to get

$$
\vec{F}=\sum i=1^{m} \rho_{i} \vec{F}=\sum_{i=1}^{m} \vec{F}_{i} .
$$

Granted this, Green's Theorem follows very easily,

$$
\begin{aligned}
\iint_{M}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y & =\sum_{i=1}^{k} \iint_{M}\left(\frac{\partial F_{i, 2}}{\partial x}-\frac{\partial F_{i, 1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\sum_{i=1}^{k} \int_{\partial M} \vec{F}_{i} \cdot \mathrm{~d} \vec{s} . \\
& =\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s} .
\end{aligned}
$$

Lemma 28.5. Let $K \subset \mathbb{R}^{n}$. Suppose that K is containedin the union of closed balls $B_{1}, B_{2}, \ldots, B_{m}$, such that any point of K belongs to the interior of at least one of $B_{1}, B_{2}, \ldots, B_{m}$.

Then we may find smooth functions $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ such that ρ_{i} is zero outside B_{i} and

$$
1=\sum_{i=1}^{m} \rho_{i} .
$$

Proof. We prove the case $n=2$. The general case is similar, only notationally more involved. First observe that it is enough to find smooth functions $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, such that σ_{i} is zero outside B_{i} and such that

$$
\sigma=\sum_{i=1}^{m} \sigma_{i}
$$

does not vanish at any point of K. Indeed, if we let

$$
\rho_{i}=\frac{\sigma_{i}}{\sigma}
$$

then ρ_{i} is smooth, it vanishes outside B_{i} and dividing both sides of the equation above by σ, we have

$$
1=\sum_{i=1}^{m} \rho_{i} .
$$

In fact it suffices to find functions $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$, such that σ_{i} vanishes outside B_{i} and which is non-zero on the interior of B_{i} (replacing σ_{i} by σ_{i}^{2}, so that σ_{i}^{2} is positive on the interior of B_{i}, we get rid of the annoying possibility that the sum is zero because of cancelling). It is enough to do this for one solid circle B_{i} and we might as well assume that $B=B_{m}=B_{1}$ is the solid unit circle. Using polar coordinates, we want a function of one variable r which is zero outside $[0,1]$ and which is non-zero on $(0,1)$, so we are now down to a one variable question.

At this point we realise we want a smooth function,

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

all of whose derivatives are zero at 0 and yet the function f is not the zero function. Such a function is given by

$$
f(x)=e^{-1 / x^{2}}
$$

