27. Line integrals

Let I be an open interval and let

$$\vec{x} \colon I \longrightarrow \mathbb{R}^n$$
,

be a parametrised differentiable curve. If $[a, b] \subset I$ then let $C = \vec{x}([a, b])$ be the image of [a, b] and let $f: C \longrightarrow \mathbb{R}$ be a function.

Definition 27.1. The line integral of f along C is

$$\int_C f \, \mathrm{d}s = \int_a^b f(\vec{x}(u)) \| \vec{x}'(u) \| \, \mathrm{d}u.$$

Let $u: J \longrightarrow I$ be a diffeomorphism between two open intervals. Suppose that u is C^1 .

Definition 27.2. We say that u is orientation-preserving if u'(t) > 0 for every $t \in J$.

We say that u is orientation-reversing if u'(t) < 0 for every $t \in J$.

Notice that u is always either orientation-preserving or orientationreversing (this is a consequence of the intermediate value theorem, applied to the continuous function u'(t)).

Define a function

$$\vec{y} \colon J \longrightarrow \mathbb{R}^n,$$

by composition,

$$\vec{y}(t) = \vec{x}(u(t)),$$

so that $\vec{y} = \vec{x} \circ u$.

Now suppose that u([c,d]) = [a,b]. Then $C = \vec{y}([c,d])$, so that \vec{y} gives another parametrisation of C.

Lemma 27.3.

$$\int_{a}^{b} f(\vec{x}(u)) \|\vec{x}'(u)\| \, \mathrm{d}u = \int_{c}^{d} f(\vec{y}(t)) \|\vec{y}'(t)\| \, \mathrm{d}t.$$

Proof. We deal with the case that u is orientation-reversing. The case that u is orientation-preserving is similar and easier.

As u is orientation-reversing, we have u(c) = b and u(d) = a and so,

$$\begin{split} \int_{c}^{d} f(\vec{y}(t)) \|\vec{y}'(t)\| \, \mathrm{d}t &= \int_{c}^{d} f(\vec{x}(u(t))) \|u(t)\vec{x}'(u(t))\| \, \mathrm{d}t \\ &= -\int_{c}^{d} f(\vec{x}(u(t))) \|\vec{x}'(u(t))\| u'(t) \, \mathrm{d}t \\ &= -\int_{b}^{a} f(\vec{x}(u)) \|\vec{x}'(u)\| \, \mathrm{d}u \\ &= \int_{a}^{b} f(\vec{x}(u)) \|\vec{x}'(u)\| \, \mathrm{d}u. \end{split}$$

Now suppose that we have a vector field on C,

$$\vec{F}\colon C\longrightarrow \mathbb{R}^n$$

Definition 27.4. The line integral of \vec{F} along C is

$$\int_C \vec{F} \cdot \mathrm{d}\vec{s} = \int_a^b \vec{F}(\vec{x}(u)) \cdot \vec{x}'(u) \,\mathrm{d}u.$$

Note that now the orientation is very important:

Lemma 27.5.

$$\int_{a}^{b} \vec{F}(\vec{x}(u)) \cdot \vec{x}'(u) \, \mathrm{d}u = \begin{cases} \int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}'(t) \, \mathrm{d}t & u'(t) > 0\\ -\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}'(t) \, \mathrm{d}t & u'(t) < 0 \end{cases}$$

Proof. We deal with the case that u is orientation-reversing. The case that u is orientation-preserving is similar and easier.

As u is orientation-reversing, we have u(c) = b and u(d) = a and so,

$$\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}'(t) dt = \int_{c}^{d} \vec{F}(\vec{x}(u(t))) \cdot \vec{x}'(u(t))u'(t) dt$$
$$= \int_{b}^{a} \vec{F}(\vec{x}(u)) \cdot \vec{x}'(u) du$$
$$= -\int_{a}^{b} \vec{F}(\vec{x}(u)) \cdot \vec{x}'(u) du. \qquad \Box$$

Example 27.6. If C is a piece of wire and $f(\vec{x})$ is the mass density at $\vec{x} \in C$, then the line integral

$$\int_C f \, \mathrm{d}s,$$

is the total mass of the curve. Clearly this is always positive, whichever way you parametrise the curve. **Example 27.7.** If C is an oriented path and $\vec{F}(\vec{x})$ is a force field, then the line integral

$$\int_C \vec{F} \cdot \mathrm{d}\vec{s}$$

is the work done when moving along C. If we reverse the orientation, then the sign flips. For example, imagine C is a spiral staircase and \vec{F} is the force due to gravity. Going up the staircase costs energy and going down we gain energy.

Definition 27.8. Let $U \subset \mathbb{R}^k$ and $V \subset \mathbb{R}^l$ be two open subsets. We say that

$$f: U \longrightarrow V$$

is smooth if all higher order partials

$$\frac{\partial^n f}{\partial x_{i_1} \dots \partial x_{i_n}}(x_1, x_2, \dots, x_k),$$

exist and are continuous.

Definition 27.9. Now suppose that $X \subset \mathbb{R}^k$ and $Y \subset \mathbb{R}^l$ are any two subsets. We say that a function

$$\vec{f} \colon X \longrightarrow Y,$$

is **smooth**, if given any point $\vec{a} \in X$ we may find $\vec{a} \in U \subset \mathbb{R}^k$ open, and a smooth function

 $\vec{F} \colon U \longrightarrow \mathbb{R}^l,$

such that $\vec{f}(\vec{x}) = \vec{F}(\vec{x})$, where $\vec{x} \in X \cap U$ (equivalently $\vec{f}|_{X \cap U} = \vec{F}|_{X \cap U}$), and we put

$$D\vec{f}(\vec{x}) = D\vec{F}(\vec{x}).$$

We say that \vec{f} is a (smooth) **diffeomorphism** if \vec{f} is bijective and both \vec{f} and \vec{f}^{-1} are smooth.

Notice that in the definition of a diffeomorphism we are now requiring more than we did (before we just required that \vec{f} and \vec{f}^{-1} were differentiable).

Remark 27.10. Note that if X is not very "big" then $Df(\vec{x})$ might not be unique. For example, if $X = {\vec{x}}$ is a single point, then there are very many different ways to extend \vec{f} to a function \vec{F} in an open neighbourhood of \vec{x} . In the examples we consider in this class, this will not be an issue (namely, manifolds with boundary). Example 27.11. The map

$$\vec{x} \colon [a, b] \longrightarrow \mathbb{R}^n,$$

is smooth if and only if there is a constant $\epsilon > 0$ and a smooth function

$$\vec{y} \colon (a - \epsilon, b + \epsilon) \longrightarrow \mathbb{R}^n$$

whose restriction to [a, b] is the function \vec{x} ,

$$\vec{y}(t) = \vec{x}(t)$$
 for all $t \in [a, b]$.

Lemma 27.12. If

 $\vec{x} \colon [a, b] \longrightarrow \mathbb{R}^n,$

is injective for all $t \in [a, b]$, then

$$\vec{x} \colon [a, b] \longrightarrow C = \vec{x}([a, b]),$$

is a diffeomorphism.