27. Line integrals

Let I be an open interval and let

$$
\vec{x}: I \longrightarrow \mathbb{R}^{n}
$$

be a parametrised differentiable curve. If $[a, b] \subset I$ then let $C=$ $\vec{x}([a, b])$ be the image of $[a, b]$ and let $f: C \longrightarrow \mathbb{R}$ be a function.

Definition 27.1. The line integral of f along C is

$$
\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{x}(u))\left\|\vec{x}^{\prime}(u)\right\| \mathrm{d} u .
$$

Let $u: J \longrightarrow I$ be a diffeomorphism between two open intervals. Suppose that u is C^{1}.

Definition 27.2. We say that u is orientation-preserving if $u^{\prime}(t)>$ 0 for every $t \in J$.

We say that u is orientation-reversing if $u^{\prime}(t)<0$ for every $t \in J$.

Notice that u is always either orientation-preserving or orientationreversing (this is a consequence of the intermediate value theorem, applied to the continuous function $\left.u^{\prime}(t)\right)$.

Define a function

$$
\vec{y}: J \longrightarrow \mathbb{R}^{n}
$$

by composition,

$$
\vec{y}(t)=\vec{x}(u(t)),
$$

so that $\vec{y}=\vec{x} \circ u$.
Now suppose that $u([c, d])=[a, b]$. Then $C=\vec{y}([c, d])$, so that \vec{y} gives another parametrisation of C.

Lemma 27.3.

$$
\int_{a}^{b} f(\vec{x}(u))\left\|\vec{x}^{\prime}(u)\right\| \mathrm{d} u=\int_{c}^{d} f(\vec{y}(t))\left\|\vec{y}^{\prime}(t)\right\| \mathrm{d} t .
$$

Proof. We deal with the case that u is orientation-reversing. The case that u is orientation-preserving is similar and easier.

As u is orientation-reversing, we have $u(c)=b$ and $u(d)=a$ and so,

$$
\begin{aligned}
\int_{c}^{d} f(\vec{y}(t))\left\|\vec{y}^{\prime}(t)\right\| \mathrm{d} t & =\int_{c}^{d} f(\vec{x}(u(t)))\left\|u(t) \vec{x}^{\prime}(u(t))\right\| \mathrm{d} t \\
& =-\int_{c}^{d} f(\vec{x}(u(t)))\left\|\vec{x}^{\prime}(u(t))\right\| u^{\prime}(t) \mathrm{d} t \\
& =-\int_{b}^{a} f(\vec{x}(u))\left\|\vec{x}^{\prime}(u)\right\| \mathrm{d} u \\
& =\int_{a}^{b} f(\vec{x}(u))\left\|\vec{x}^{\prime}(u)\right\| \mathrm{d} u .
\end{aligned}
$$

Now suppose that we have a vector field on C,

$$
\vec{F}: C \longrightarrow \mathbb{R}^{n}
$$

Definition 27.4. The line integral of \vec{F} along C is

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{s}=\int_{a}^{b} \vec{F}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u
$$

Note that now the orientation is very important:

Lemma 27.5.

$$
\int_{a}^{b} \vec{F}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u= \begin{cases}\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & u^{\prime}(t)>0 \\ -\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & u^{\prime}(t)<0\end{cases}
$$

Proof. We deal with the case that u is orientation-reversing. The case that u is orientation-preserving is similar and easier.

As u is orientation-reversing, we have $u(c)=b$ and $u(d)=a$ and so,

$$
\begin{aligned}
\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & =\int_{c}^{d} \vec{F}(\vec{x}(u(t))) \cdot \vec{x}^{\prime}(u(t)) u^{\prime}(t) \mathrm{d} t \\
& =\int_{b}^{a} \vec{F}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u \\
& =-\int_{a}^{b} \vec{F}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u .
\end{aligned}
$$

Example 27.6. If C is a piece of wire and $f(\vec{x})$ is the mass density at $\vec{x} \in C$, then the line integral

$$
\int_{C} f \mathrm{~d} s
$$

is the total mass of the curve. Clearly this is always positive, whichever way you parametrise the curve.

Example 27.7. If C is an oriented path and $\vec{F}(\vec{x})$ is a force field, then the line integral

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

is the work done when moving along C. If we reverse the orientation, then the sign flips. For example, imagine C is a spiral staircase and \vec{F} is the force due to gravity. Going up the staircase costs energy and going down we gain energy.

Definition 27.8. Let $U \subset \mathbb{R}^{k}$ and $V \subset \mathbb{R}^{l}$ be two open subsets.
We say that

$$
f: U \longrightarrow V,
$$

is smooth if all higher order partials

$$
\frac{\partial^{n} f}{\partial x_{i_{1}} \ldots \partial x_{i_{n}}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

exist and are continuous.
Definition 27.9. Now suppose that $X \subset \mathbb{R}^{k}$ and $Y \subset \mathbb{R}^{l}$ are any two subsets. We say that a function

$$
\vec{f}: X \longrightarrow Y,
$$

is smooth, if given any point $\vec{a} \in X$ we may find $\vec{a} \in U \subset \mathbb{R}^{k}$ open, and a smooth function

$$
\vec{F}: U \longrightarrow \mathbb{R}^{l}
$$

such that $\vec{f}(\vec{x})=\vec{F}(\vec{x})$, where $\vec{x} \in X \cap U$ (equivalently $\left.\vec{f}\right|_{X \cap U}=\left.\vec{F}\right|_{X \cap U}$), and we put

$$
D \vec{f}(\vec{x})=D \vec{F}(\vec{x}) .
$$

We say that \vec{f} is a (smooth) diffeomorphism if \vec{f} is bijective and both \vec{f} and \vec{f}^{-1} are smooth.

Notice that in the definition of a diffeomorphism we are now requiring more than we did (before we just required that \vec{f} and \vec{f}^{-1} were differentiable).

Remark 27.10. Note that if X is not very"big" then $D f(\vec{x})$ might not be unique. For example, if $X=\{\vec{x}\}$ is a single point, then there are very many different ways to extend \vec{f} to a function \vec{F} in an open neighbourhood of \vec{x}. In the examples we consider in this class, this will not be an issue (namely, manifolds with boundary).

Example 27.11. The map

$$
\vec{x}:[a, b] \longrightarrow \mathbb{R}^{n}
$$

is smooth if and only if there is a constant $\epsilon>0$ and a smooth function

$$
\vec{y}:(a-\epsilon, b+\epsilon) \longrightarrow \mathbb{R}^{n},
$$

whose restriction to $[a, b]$ is the function \vec{x},

$$
\vec{y}(t)=\vec{x}(t) \quad \text { for all } \quad t \in[a, b] .
$$

Lemma 27.12. If

$$
\vec{x}:[a, b] \longrightarrow \mathbb{R}^{n},
$$

is injective for all $t \in[a, b]$, then

$$
\vec{x}:[a, b] \longrightarrow C=\vec{x}([a, b]),
$$

is a diffeomorphism.

