25. Change of coordinates: I

Definition 25.1. A function $f: U \longrightarrow V$ between two open subsets of \mathbb{R}^{n} is called a diffeomorphism if:
(1) f is a bijection,
(2) f is differentiable, and
(3) f^{-1} is differentiable.

Almost be definition of the inverse function, $f \circ f^{-1}: V \longrightarrow V$ and $f^{-1} \circ f: U \longrightarrow U$ are both the identity function, so that

$$
\left(f \circ f^{-1}\right)(\vec{y})=\vec{y} \quad \text { and } \quad\left(f^{-1} \circ f\right)(\vec{x})=\vec{x} .
$$

It follows that

$$
D f(\vec{x}) D f^{-1}(\vec{y})=I_{n} \quad \text { and } \quad D f^{-1}(\vec{y}) D f(\vec{x})=I_{n}
$$

by the chain rule. Taking determinants, we see that

$$
\operatorname{det}(D f) \operatorname{det}\left(D f^{-1}\right)=\operatorname{det} I_{n}=1
$$

Therefore,

$$
\operatorname{det}\left(D f^{-1}\right)=(\operatorname{det}(D f))^{-1}
$$

It follows that

$$
\operatorname{det}(D f) \neq 0
$$

Theorem 25.2 (Inverse function theorem). Let $U \subset \mathbb{R}^{n}$ be an open subset and let $f: U \longrightarrow \mathbb{R}$ be a function.

Suppose that
(1) f is injective,
(2) f is \mathcal{C}^{1}, and
(3) $D f(\vec{x}) \neq 0$ for all $\vec{x} \in U$.

Then $V=f(U) \subset \mathbb{R}^{n}$ is open and the induced map $f: U \longrightarrow V$ is a diffeomorphism.

Example 25.3. Let $f(r, \theta)=(r \cos \theta, r \sin \theta)$. Then

$$
D f(r, \theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)
$$

so that

$$
\operatorname{det} D f(r, \theta)=r
$$

It follows that f defines a diffeomorphism $f: U \longrightarrow V$ between
$U=(0, \infty) \times(0,2 \pi) \quad$ and $\quad V=\mathbb{R}^{2} \backslash\left\{(x, y) \in \mathbb{R}^{2} \mid y=0, x \geq 0\right\}$.

Theorem 25.4. Let $g: U \longrightarrow V$ be a diffeomorphism between open subsets of \mathbb{R}^{2},

$$
g(u, v)=(x(u, v), y(u, v)) .
$$

Let $D^{*} \subset U$ be a region and let $D=f\left(D^{*}\right) \subset V$. Let $f: D \longrightarrow \mathbb{R}$ be a function.

Then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D^{*}} f(x(u, v), y(u, v))|\operatorname{det} D g(u, v)| \mathrm{d} u \mathrm{~d} v
$$

It is convenient to use the following notation:

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=\operatorname{det} D g(u, v)
$$

The LHS is called the Jacobian. Note that

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=\left(\frac{\partial(u, v)}{\partial(x, y)}(x, y)\right)^{-1}
$$

Example 25.5. There is no simple expression for the integral of $e^{-x^{2}}$. However it is possible to compute the following integral

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x
$$

(In what follows, we will ignore issues relating to the fact that the integrals are improper; in practice all integrals converge). Instead of
computing I, we compute I^{2},

$$
\begin{aligned}
I^{2} & =\left(\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} \mathrm{~d} y\right) \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} \mathrm{~d} x\right) \mathrm{d} y \\
& =\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y \\
& =\iint_{\mathbb{R}^{2}} r e^{-r^{2}} \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\infty}\left(\int_{0}^{2 \pi} r e^{-r^{2}} \mathrm{~d} \theta\right) \mathrm{d} r \\
& =\int_{0}^{\infty} r e^{-r^{2}}\left(\int_{0}^{2 \pi} \mathrm{~d} \theta\right) \mathrm{d} r \\
& =2 \pi \int_{0}^{\infty} r e^{-r^{2}} \mathrm{~d} r \\
& =2 \pi\left[-\frac{e^{-r^{2}}}{2}\right]_{0}^{\infty} \\
& =\pi
\end{aligned}
$$

So $I=\sqrt{\pi}$.
Example 25.6. Find the area of the region D bounded by the four curves

$$
x y=1, \quad x y=3, \quad y=x^{3}, \quad \text { and } \quad y=2 x^{3} .
$$

Define two new variables,

$$
u=\frac{x^{3}}{y} \quad \text { and } \quad v=x y
$$

Then D is a rectangle in uv-coordinates,

$$
D^{*}=[1 / 2,1] \times[1,3]
$$

Now for the Jacobian we have

$$
\frac{\partial(u, v)}{\partial(x, y)}(x, y)=\left|\begin{array}{cc}
\frac{3 x^{2}}{y} & -\frac{x^{3}}{y^{2}} \\
y & x
\end{array}\right|=\frac{4 x^{3}}{y}=4 u .
$$

It follows that

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=\frac{1}{4 u} .
$$

This is nowhere zero. In fact note that we can solve for x and y explicitly in terms of u and v.

$$
u v=x^{4} \quad \text { and } \quad y=\frac{x}{v} .
$$

So

$$
x=(u v)^{1 / 4} \quad \text { and } \quad y=u^{-1 / 4} v^{3 / 4} .
$$

Therefore

$$
\begin{aligned}
\operatorname{area}(D) & =\iint_{D} \mathrm{~d} x \mathrm{~d} y \\
& =\iint_{D^{*}} \frac{1}{4 u} \mathrm{~d} u \mathrm{~d} v \\
& =\frac{1}{4} \int_{1}^{3}\left(\int_{1 / 2}^{1} \frac{1}{u} \mathrm{~d} u\right) \mathrm{d} v \\
& =\frac{1}{4} \int_{1}^{3}[\ln u]_{1 / 2}^{1} \mathrm{~d} v \\
& =\frac{1}{4} \int_{1}^{3} \ln 2 \mathrm{~d} v \\
& =\frac{1}{2} \ln 2
\end{aligned}
$$

Theorem 25.7. Let $g: U \longrightarrow V$ be a diffeomorphism between open subsets of \mathbb{R}^{3},

$$
g(u, v, w)=(x(u, v, w), y(u, v, w), z(u, v, w)) .
$$

Let $W^{*} \subset U$ be a region and let $W=f\left(W^{*}\right) \subset V$. Let $f: W \longrightarrow \mathbb{R}$ be a function.

Then
$\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))|\operatorname{det} D g(u, v, w)| \mathrm{d} u \mathrm{~d} v \mathrm{~d} w$.
As before, it is convenient to introduce more notation:

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}(u, v, w)=\operatorname{det} D g(u, v, w)
$$

