24. Triple integrals

Definition 24.1. Let $B = [a, b] \times [c, d] \times [e, f] \subset \mathbb{R}^3$ be a box in space. A **partition** \mathcal{P} of R is a triple of sequences:

$$a = x_0 < x_1 < \dots < x_n = b$$

 $c = y_0 < y_1 < \dots < y_n = d$
 $e = z_0 < z_1 < \dots < z_n = f$.

The **mesh** of P is

$$m(\mathcal{P}) = \max\{x_i - x_{i-1}, y_i - y_{i-1}, z_i - z_{i-1} \mid 1 \le i \le k\}.$$

Now suppose we are given a function

$$f: B \longrightarrow \mathbb{R}$$

Pick

$$\vec{c}_{ijk} \in B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_i, z_{i-1}].$$

Definition 24.2. The sum

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f(\vec{c}_{ijk})(x_i - x_{i-1})(y_j - y_{j-1})(z_i - z_{i-1}),$$

is called a **Riemann sum**.

Definition 24.3. The function $f: B \longrightarrow \mathbb{R}$ is called **integrable**, with integral I, if for every $\epsilon > 0$, we may find a $\delta > 0$ such that for every mesh \mathcal{P} whose mesh size is less than δ , we have

$$|I - S| < \epsilon$$
,

where S is any Riemann sum associated to \mathcal{P} .

If $W \subset \mathbb{R}^3$ is a bounded subset and $f: W \longrightarrow \mathbb{R}$ is a bounded function, then pick a box B containing W and extend f by zero to a function $\tilde{f}: B \longrightarrow \mathbb{R}$,

$$\tilde{f}(x) = \begin{cases} x & \text{if } x \in W \\ 0 & \text{otherwise.} \end{cases}$$

If \tilde{f} is integrable, then we write

$$\iiint_W f(x, y, z) dx dy dz = \iiint_B \tilde{f}(x, y, z) dx dy dz.$$

In particular

$$vol(W) = \iiint_W dx \, dy \, dz.$$

There are two pairs of results, which are much the same as the results for double integrals:

Proposition 24.4. Let $W \subset \mathbb{R}^2$ be a bounded subset and let $f: W \longrightarrow$ \mathbb{R} and $g: W \longrightarrow \mathbb{R}$ be two integrable functions. Let λ be a scalar. Then

(1) f + q is integrable over W and

$$\iiint_W f(x,y,z) + g(x,y,z) \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \iiint_W f(x,y,z) \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z + \iiint_W g(x,y,z) \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z.$$

(2) λf is integrable over W and

$$\iiint_{W} \lambda f(x, y, z) dx dy dz = \lambda \iiint_{W} f(x, y, z) dx dy dz.$$

(3) If $f(x, y, z) \leq g(x, y, z)$ for any $(x, y, z) \in W$, then

$$\iiint_W f(x, y, z) dx dy dz \le \iiint_W g(x, y, z) dx dy dz.$$

(4) |f| is integrable over W and

$$\left| \iiint_{W} f(x, y, z) \, dx \, dy \, dz \right| \le \iiint_{W} |f(x, y, z)| \, dx \, dy \, dz.$$

Proposition 24.5. Let $W = W_1 \cup W_2 \subset \mathbb{R}^3$ be a bounded subset and let $f: W \longrightarrow \mathbb{R}$ be a bounded function.

If f is integrable over W_1 and over W_2 , then f is integrable over W and and $W_1 \cap W_2$, and we have

$$\iiint_{W} f(x, y, z) dx dy dz = \iiint_{W_{1}} f(x, y, z) dx dy dz + \iiint_{W_{2}} f(x, y, z) dx dy dz$$
$$- \iiint_{W_{1} \cap W_{2}} f(x, y, z) dx dy dz.$$

Definition 24.6. Define three maps

$$\pi_{ij} \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

by projection onto the ith and jth coordinate.

In coordinates, we have

$$\pi_{12}(x, y, z) = (x, y), \qquad \pi_{23}(x, y, z) = (y, z), \qquad \text{and} \qquad \pi_{13}(x, y, z) = (x, z).$$

For example, if we start with a solid pyramid and project onto the xy-plane, the image is a square, but it project onto the xz-plane, the image is a triangle. Similarly onto the yz-plane.

Definition 24.7. A bounded subset $W \subset \mathbb{R}^3$ is an elementary sub**set** if it is one of four types:

Type 1: $D = \pi_{12}(W)$ is an elementary region and

$$W = \{ (x, y, z) \in \mathbb{R}^2 \, | \, (x, y) \in D, \epsilon(x, y) \le z \le \phi(x, y) \, \},$$

where $\epsilon \colon D \longrightarrow \mathbb{R}$ and $\phi \colon D \longrightarrow \mathbb{R}$ are continuous functions.

Type 2: $D = \pi_{23}(W)$ is an elementary region and

$$W = \{ (x, y, z) \in \mathbb{R}^2 \, | \, (y, z) \in D, \alpha(y, z) \le x \le \beta(y, z) \, \},\$$

where $\alpha \colon D \longrightarrow \mathbb{R}$ and $\beta \colon D \longrightarrow \mathbb{R}$ are continuous functions.

Type 3: $D = \pi_{13}(W)$ is an elementary region and

$$W = \{ (x, y, z) \in \mathbb{R}^2 \mid (x, z) \in D, \gamma(x, z) \le y \le \delta(x, z) \},\$$

where $\gamma \colon D \longrightarrow \mathbb{R}$ and $\delta \colon D \longrightarrow \mathbb{R}$ are continuous functions.

Type 4: W is of type 1, 2 and 3.

The solid pyramid is of type 4.

Theorem 24.8. Let $W \subset \mathbb{R}^3$ be an elementary region and let $f: W \longrightarrow \mathbb{R}$ be a continuous function.

Then

(1) If W is of type 1, then

$$\iiint_W f(x, y, z) dx dy dz = \iint_{\pi_{12}(W)} \left(\int_{\epsilon(x, y)}^{\phi(x, y)} f(x, y, z) dz \right) dx dy.$$

(2) If W if of type 2, then

$$\iiint_W f(x, y, z) dx dy dz = \iint_{\pi_{23}(W)} \left(\int_{\alpha(y, z)}^{\beta(y, z)} f(x, y, z) dx \right) dy dz.$$

(3) If W if of type 3, then

$$\iiint_W f(x, y, z) dx dy dz = \iint_{\pi_{13}(W)} \left(\int_{\gamma(x, z)}^{\delta(x, z)} f(x, y, z) dy \right) dx dz.$$

Let's figure out the volume of the solid ellipsoid:

$$W = \{ (x, y, z) \in \mathbb{R}^3 \mid \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 \le 1 \}.$$

This is an elementary region of type 4.

$$vol(W) = \iiint_{W} dx \, dy \, dz$$

$$= \int_{-a}^{a} \left(\int_{-b\sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \left(\int_{-c\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}^{c\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}} dz \right) \, dy \right) dx$$

$$= \int_{-a}^{a} \left(\int_{-b\sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b\sqrt{1-\left(\frac{x}{a}\right)^{2}}} 2c\sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \, dy \right) dx$$

$$= 2c \int_{-a}^{a} \left(\int_{-b\sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \, dy \right) dx$$

$$= \frac{2c}{b} \int_{-a}^{a} \left(\int_{-b\sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \sqrt{b^{2} \left(1-\left(\frac{x}{a}\right)^{2}\right)-y^{2}} \, dy \right) dx$$

$$= \frac{\pi c}{b} \int_{-a}^{a} b^{2} \left(1-\left(\frac{x}{a}\right)^{2} \right) dx$$

$$= \pi bc \int_{-a}^{a} 1-\left(\frac{x}{a}\right)^{2} dx$$

$$= \pi bc \left[x - \frac{x^{3}}{3a^{2}} \right]_{-a}^{a}$$

$$= \pi bc \left(2a - 2\frac{a^{3}}{3a^{2}} \right)$$

$$= \frac{4\pi}{3} abc.$$