
2. Dot product

Definition 2.1. Let ~v = (v1, v2, v3) and ~w = (w1, w2, w3) be two vectors
in R3. The dot product of ~v and ~w, denoted ~v · ~w, is the scalar
v1w1 + v2w2 + v3w3.

Example 2.2. The dot product of ~v = (1,−2,−1) and ~w = (2, 1,−3)
is

1 · 2 + (−2) · 1 + (−1) · (−3) = 2− 2 + 3 = 3.

Lemma 2.3. Let ~u, ~v and ~w be three vectors in R3 and let λ be a
scalar.

(1) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.
(2) ~v · ~w = ~w · ~v.
(3) (λ~v) · ~w = λ(~v · ~w).

(4) ~v · ~v = 0 if and only if ~v = ~0.

Proof. (1–3) are straightforward.

To see (4), first note that one direction is clear. If ~v = ~0, then
~v · ~v = 0. For the other direction, suppose that ~v · ~v = 0. Then
v2

1 + v2
2 + v2

3 = 0. Now the square of a real number is non-negative and
if a sum of non-negative numbers is zero, then each term must be zero.
It follows that v1 = v2 = v3 = 0 and so ~v = ~0. �

Definition 2.4. If ~v ∈ R3, then the norm or length of ~v = (v1, v2, v3)
is the scalar

‖v‖ =
√
~v · ~v = (v2

1 + v2
2 + v2

3)1/2.

It is interesting to note that if you know the norm, then you can
calculate the dot product:

(~v + ~w) · (~v + ~w) = ~v · ~v + 2~v · ~w + ~w · ~w
(~v − ~w) · (~v − ~w) = ~v · ~v − 2~v · ~w + ~w · ~w.

Subtracting and dividing by 4 we get

~v · ~w =
1

4
((~v + ~w) · (~v + ~w)− (~v − ~w) · (~v − ~w))

=
1

4
(‖~v + ~w‖2 − ‖~v − ~w‖2).

Given two non-zero vectors ~v and ~w in space, note that we can define
the angle θ between ~v and ~w. ~v and ~w lie in at least one plane (which
is in fact unique, unless ~v and ~w are parallel). Now just measure the
angle θ between the ~v and ~w in this plane. By convention we always
take 0 ≤ θ ≤ π.
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Theorem 2.5. If ~v and ~w are any two vectors in R3, then

~v · ~w = ‖~v‖ ‖~w‖ cos θ.

Proof. If ~v is the zero vector, then both sides are equal to zero, so that
they are equal to each other and the formula holds (note though, that
in this case the angle θ is not determined).

By symmetry, we may assume that ~v and ~w are both non-zero. Let
~u = ~w−~v and apply the law of cosines to the triangle with sides parallel
to ~u, ~v and ~w:

‖~u‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cos θ.

We have already seen that the LHS of this equation expands to

~v · ~v − 2~v · ~w + ~w · ~w = ‖~v‖2 − 2~v · ~w + ‖~w‖.

Cancelling the common terms ‖~v‖2 and ‖~w‖2 from both sides, and
dividing by 2, we get the desired formula. �

We can use (2.5) to find the angle between two vectors:

Example 2.6. Let ~v = −ı̂+ k̂ and ~w = ı̂+ ̂. Then

−1 = ~v · ~w = ‖~v‖‖~w‖ cos θ = 2 cos θ.

Therefore cos θ = −1/2 and so θ = 2π/3.

Definition 2.7. We say that two vectors ~v and ~w in R3 are orthog-
onal if ~v · ~w = 0.

Remark 2.8. If neither ~v nor ~w are the zero vector, and ~v · ~w = 0 then
the angle between ~v and ~w is a right angle. Our convention is that the
zero vector is orthogonal to every vector.

Example 2.9. ı̂, ̂ and k̂ are pairwise orthogonal.

Given two vectors ~v and ~w, we can project ~v onto ~w. The resulting
vector is called the projection of ~v onto ~w and is denoted proj~w ~v. For

example, if ~F is a force and ~w is a direction, then the projection of ~F
onto ~w is the force in the direction of ~w.

As proj~w ~v is parallel to ~w, we have

proj~w ~v = λ~w,

for some scalar λ. Let’s determine λ. Let’s deal with the case that
λ ≥ 0 (so that the angle θ between ~v and ~w is between 0 and π/2). If
we take the norm of both sides, we get

‖ proj~w ~v‖ = ‖λ~w‖ = λ‖~w‖,
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(note that λ ≥ 0), so that

λ =
‖ proj~w ~v‖
‖~w‖

.

But

cos θ =
‖ proj~w ~v‖
‖~v‖

,

so that

‖ proj~w ~v‖ = ‖~v‖ cos θ.

Putting all of this together we get

λ =
‖~v‖ cos θ

‖~w‖

=
‖~v‖‖~w‖ cos θ

‖~w‖2

=
~v · ~w
‖~w‖2

.

There are a number of ways to deal with the case when λ < 0 (so
that θ > π/2). One can carry out a similar analysis to the one given
above. Here is another way. Note that the angle φ between ~w and
~u = −~v is equal to π − θ < π/2. By what we already proved

proj~w ~u =
~u · ~w
‖~w‖2

~w.

But proj~w ~u = − proj~w ~v and ~u · ~w = −~v · ~w, so we get the same formula
in the end. To summarise:

Theorem 2.10. If ~v and ~w are two vectors in R3, where ~w is not zero,
then

proj~w ~v =

(
~v · ~w
‖~w‖2

)
~w.

Example 2.11. Find the distance d between the line l containing the
points P1 = (1,−1, 2) and P2 = (4, 1, 0) and the point Q = (3, 2, 4).

Suppose that R is the closest point on the line l to the point Q. Note

that
−→
QR is orthogonal to the direction

−−→
P1P2 of the line. So we want the

length of the vector
−−→
P1Q− proj−−−→

P1P2

−−→
P1Q, that is, we want

d = ‖
−−→
P1Q− proj−−−→

P1P2

−−→
P1Q‖.

Now −−→
P1Q = (2, 3, 2) and

−−→
P1P2 = (3, 2,−2).
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We have

‖
−−→
P1P2‖2 = 32 + 22 + 22 = 17 and

−−→
P1P2 ·

−−→
P1Q = 6 + 6− 4 = 8.

It follows that

proj−−−→
P1P2

−−→
P1Q =

8

17
(3, 2,−2).

Subtracting, we get

−−→
P1Q−proj−−−→

P1P2

−−→
P1Q = (2, 3, 2)− 8

17
(3, 2,−2) =

1

17
(10, 35, 50) =

5

17
(2, 7, 10).

Taking the length, we get

5

17
(22 + 72 + 102)1/2 ≈ 3.64.

Theorem 2.12. The angle subtended on the circumference of a circle
by a diameter of the circle is always a right angle.

Proof. Suppose that P and Q are the two endpoints of a diameter of
the circle and that R is a point on the circumference. We want to show

that the angle between
−→
PR and

−→
QR is a right angle.

Let O be the centre of the circle. Then
−→
PR =

−→
PO +

−→
OR and

−→
QR =

−→
QO +

−→
OR.

Note that
−→
QO = −

−→
PO. Therefore

−→
PR ·

−→
QR = (

−→
PO +

−→
OR) · (

−→
QO +

−→
OR)

= (
−→
PO +

−→
OR) · (

−→
OR−

−→
PO)

= ‖
−→
OR‖2 −

−−→
‖PO‖2

= r2 − r2 = 0,

where r is the radius of the circle. It follows that
−→
PR and

−→
QR are

indeed orthogonal. �

4


	2. Dot product

