2. Dot product

Definition 2.1. Let $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ be two vectors in \mathbb{R}^{3}. The dot product of \vec{v} and \vec{w}, denoted $\vec{v} \cdot \vec{w}$, is the scalar $v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$.

Example 2.2. The dot product of $\vec{v}=(1,-2,-1)$ and $\vec{w}=(2,1,-3)$ is

$$
1 \cdot 2+(-2) \cdot 1+(-1) \cdot(-3)=2-2+3=3
$$

Lemma 2.3. Let \vec{u}, \vec{v} and \vec{w} be three vectors in \mathbb{R}^{3} and let λ be a scalar.
(1) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$.
(2) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$.
(3) $(\lambda \vec{v}) \cdot \vec{w}=\lambda(\vec{v} \cdot \vec{w})$.
(4) $\vec{v} \cdot \vec{v}=0$ if and only if $\vec{v}=\overrightarrow{0}$.

Proof. (1-3) are straightforward.
To see (4), first note that one direction is clear. If $\vec{v}=\overrightarrow{0}$, then $\vec{v} \cdot \vec{v}=0$. For the other direction, suppose that $\vec{v} \cdot \vec{v}=0$. Then $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=0$. Now the square of a real number is non-negative and if a sum of non-negative numbers is zero, then each term must be zero. It follows that $v_{1}=v_{2}=v_{3}=0$ and so $\vec{v}=\overrightarrow{0}$.

Definition 2.4. If $\vec{v} \in \mathbb{R}^{3}$, then the norm or length of $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is the scalar

$$
\|v\|=\sqrt{\vec{v} \cdot \vec{v}}=\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)^{1 / 2} .
$$

It is interesting to note that if you know the norm, then you can calculate the dot product:

$$
\begin{aligned}
& (\vec{v}+\vec{w}) \cdot(\vec{v}+\vec{w})=\vec{v} \cdot \vec{v}+2 \vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w} \\
& (\vec{v}-\vec{w}) \cdot(\vec{v}-\vec{w})=\vec{v} \cdot \vec{v}-2 \vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w} .
\end{aligned}
$$

Subtracting and dividing by 4 we get

$$
\begin{aligned}
\vec{v} \cdot \vec{w} & =\frac{1}{4}((\vec{v}+\vec{w}) \cdot(\vec{v}+\vec{w})-(\vec{v}-\vec{w}) \cdot(\vec{v}-\vec{w})) \\
& =\frac{1}{4}\left(\|\vec{v}+\vec{w}\|^{2}-\|\vec{v}-\vec{w}\|^{2}\right) .
\end{aligned}
$$

Given two non-zero vectors \vec{v} and \vec{w} in space, note that we can define the angle θ between \vec{v} and $\vec{w} . \vec{v}$ and \vec{w} lie in at least one plane (which is in fact unique, unless \vec{v} and \vec{w} are parallel). Now just measure the angle θ between the \vec{v} and \vec{w} in this plane. By convention we always take $0 \leq \theta \leq \pi$.

Theorem 2.5. If \vec{v} and \vec{w} are any two vectors in \mathbb{R}^{3}, then

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

Proof. If \vec{v} is the zero vector, then both sides are equal to zero, so that they are equal to each other and the formula holds (note though, that in this case the angle θ is not determined).

By symmetry, we may assume that \vec{v} and \vec{w} are both non-zero. Let $\vec{u}=\vec{w}-\vec{v}$ and apply the law of cosines to the triangle with sides parallel to \vec{u}, \vec{v} and \vec{w} :

$$
\|\vec{u}\|^{2}=\|\vec{v}\|^{2}+\|\vec{w}\|^{2}-2\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

We have already seen that the LHS of this equation expands to

$$
\vec{v} \cdot \vec{v}-2 \vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w}=\|\vec{v}\|^{2}-2 \vec{v} \cdot \vec{w}+\|\vec{w}\| .
$$

Cancelling the common terms $\|\vec{v}\|^{2}$ and $\|\vec{w}\|^{2}$ from both sides, and dividing by 2 , we get the desired formula.

We can use (2.5) to find the angle between two vectors:
Example 2.6. Let $\vec{v}=-\hat{\imath}+\hat{k}$ and $\vec{w}=\hat{\imath}+\hat{\jmath}$. Then

$$
-1=\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta=2 \cos \theta
$$

Therefore $\cos \theta=-1 / 2$ and so $\theta=2 \pi / 3$.
Definition 2.7. We say that two vectors \vec{v} and \vec{w} in \mathbb{R}^{3} are orthogonal if $\vec{v} \cdot \vec{w}=0$.

Remark 2.8. If neither \vec{v} nor \vec{w} are the zero vector, and $\vec{v} \cdot \vec{w}=0$ then the angle between \vec{v} and \vec{w} is a right angle. Our convention is that the zero vector is orthogonal to every vector.

Example 2.9. $\hat{\imath}, \hat{\jmath}$ and \hat{k} are pairwise orthogonal.
Given two vectors \vec{v} and \vec{w}, we can project \vec{v} onto \vec{w}. The resulting vector is called the projection of \vec{v} onto \vec{w} and is denoted $\operatorname{proj}_{\vec{w}} \vec{v}$. For example, if \vec{F} is a force and \vec{w} is a direction, then the projection of \vec{F} onto \vec{w} is the force in the direction of \vec{w}.

As $\operatorname{proj}_{\vec{w}} \vec{v}$ is parallel to \vec{w}, we have

$$
\operatorname{proj}_{\vec{w}} \vec{v}=\lambda \vec{w},
$$

for some scalar λ. Let's determine λ. Let's deal with the case that $\lambda \geq 0$ (so that the angle θ between \vec{v} and \vec{w} is between 0 and $\pi / 2$). If we take the norm of both sides, we get

$$
\left\|\operatorname{proj}_{\vec{w}} \vec{v}\right\|=\underset{2}{\|\lambda \vec{w}\|=\lambda\|\vec{w}\|, ~ \text {, }}
$$

(note that $\lambda \geq 0$), so that

$$
\lambda=\frac{\left\|\operatorname{proj}_{\vec{w}} \vec{v}\right\|}{\|\vec{w}\|}
$$

But

$$
\cos \theta=\frac{\left\|\operatorname{proj}_{\vec{w}} \vec{v}\right\|}{\|\vec{v}\|}
$$

so that

$$
\left\|\operatorname{proj}_{\vec{w}} \vec{v}\right\|=\|\vec{v}\| \cos \theta
$$

Putting all of this together we get

$$
\begin{aligned}
\lambda & =\frac{\|\vec{v}\| \cos \theta}{\|\vec{w}\|} \\
& =\frac{\|\vec{v}\|\|\vec{w}\| \cos \theta}{\|\vec{w}\|^{2}} \\
& =\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} .
\end{aligned}
$$

There are a number of ways to deal with the case when $\lambda<0$ (so that $\theta>\pi / 2$). One can carry out a similar analysis to the one given above. Here is another way. Note that the angle ϕ between \vec{w} and $\vec{u}=-\vec{v}$ is equal to $\pi-\theta<\pi / 2$. By what we already proved

$$
\operatorname{proj}_{\vec{w}} \vec{u}=\frac{\vec{u} \cdot \vec{w}}{\|\vec{w}\|^{2}} \vec{w} .
$$

But $\operatorname{proj}_{\vec{w}} \vec{u}=-\operatorname{proj}_{\vec{w}} \vec{v}$ and $\vec{u} \cdot \vec{w}=-\vec{v} \cdot \vec{w}$, so we get the same formula in the end. To summarise:

Theorem 2.10. If \vec{v} and \vec{w} are two vectors in \mathbb{R}^{3}, where \vec{w} is not zero, then

$$
\operatorname{proj}_{\vec{w}} \vec{v}=\left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}}\right) \vec{w} .
$$

Example 2.11. Find the distance d between the line l containing the points $P_{1}=(1,-1,2)$ and $P_{2}=(4,1,0)$ and the point $Q=(3,2,4)$.

Suppose that R is the closest point on the line l to the point Q. Note that $\overrightarrow{Q R}$ is orthogonal to the direction $\overrightarrow{P_{1} P_{2}}$ of the line. So we want the length of the vector $\overrightarrow{P_{1} Q}-\operatorname{proj}_{\overrightarrow{P_{1} P_{2}}} \overrightarrow{P_{1} Q}$, that is, we want

$$
d=\left\|\overrightarrow{P_{1} Q}-\operatorname{proj}_{\overrightarrow{P_{1} P_{2}}} \overrightarrow{P_{1} Q}\right\|
$$

Now

$$
\overrightarrow{P_{1} Q}=(2,3,2) \quad \text { and } \quad \overrightarrow{3} \quad \overrightarrow{P_{1} P_{2}}=(3,2,-2)
$$

We have

$$
\left\|\overrightarrow{P_{1} P_{2}}\right\|^{2}=3^{2}+2^{2}+2^{2}=17 \quad \text { and } \quad \overrightarrow{P_{1} P_{2}} \cdot \overrightarrow{P_{1} Q}=6+6-4=8
$$

It follows that

$$
\operatorname{proj}_{\overrightarrow{P_{1} P_{2}}} \overrightarrow{P_{1} Q}=\frac{8}{17}(3,2,-2)
$$

Subtracting, we get
$\overrightarrow{P_{1} Q}-\operatorname{proj}_{\overrightarrow{P_{1} P_{2}}} \overrightarrow{P_{1} Q}=(2,3,2)-\frac{8}{17}(3,2,-2)=\frac{1}{17}(10,35,50)=\frac{5}{17}(2,7,10)$.
Taking the length, we get

$$
\frac{5}{17}\left(2^{2}+7^{2}+10^{2}\right)^{1 / 2} \approx 3.64
$$

Theorem 2.12. The angle subtended on the circumference of a circle by a diameter of the circle is always a right angle.

Proof. Suppose that P and Q are the two endpoints of a diameter of the circle and that R is a point on the circumference. We want to show that the angle between $\overrightarrow{P R}$ and $\overrightarrow{Q R}$ is a right angle.

Let O be the centre of the circle. Then

$$
\overrightarrow{P R}=\overrightarrow{P O}+\overrightarrow{O R} \quad \text { and } \quad \overrightarrow{Q R}=\overrightarrow{Q O}+\overrightarrow{O R}
$$

Note that $\overrightarrow{Q O}=-\overrightarrow{P O}$. Therefore

$$
\begin{aligned}
\overrightarrow{P R} \cdot \overrightarrow{Q R} & =(\overrightarrow{P O}+\overrightarrow{O R}) \cdot(\overrightarrow{Q O}+\overrightarrow{O R}) \\
& =(\overrightarrow{P O}+\overrightarrow{O R}) \cdot(\overrightarrow{O R}-\overrightarrow{P O}) \\
& =\|\overrightarrow{O R}\|^{2}-\overrightarrow{\| P O} \|^{2} \\
& =r^{2}-r^{2}=0,
\end{aligned}
$$

where r is the radius of the circle. It follows that $\overrightarrow{P R}$ and $\overrightarrow{Q R}$ are indeed orthogonal.

