2. Dot product

Definition 2.1. Let \(\vec{v} = (v_1, v_2, v_3) \) and \(\vec{w} = (w_1, w_2, w_3) \) be two vectors in \(\mathbb{R}^3 \). The dot product of \(\vec{v} \) and \(\vec{w} \), denoted \(\vec{v} \cdot \vec{w} \), is the scalar \(v_1w_1 + v_2w_2 + v_3w_3 \).

Example 2.2. The dot product of \(\vec{v} = (1, -2, -1) \) and \(\vec{w} = (2, 1, -3) \) is
\[
1 \cdot 2 + (-2) \cdot 1 + (-1) \cdot (-3) = 2 - 2 + 3 = 3.
\]

Lemma 2.3. Let \(\vec{u}, \vec{v}, \) and \(\vec{w} \) be three vectors in \(\mathbb{R}^3 \) and let \(\lambda \) be a scalar.

(1) \((\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \).

(2) \(\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v} \).

(3) \((\lambda \vec{v}) \cdot \vec{w} = \lambda (\vec{v} \cdot \vec{w}) \).

(4) \(\vec{v} \cdot \vec{v} = 0 \) if and only if \(\vec{v} = \vec{0} \).

Proof. (1–3) are straightforward.

To see (4), first note that one direction is clear. If \(\vec{v} = \vec{0} \), then \(\vec{v} \cdot \vec{v} = 0 \). For the other direction, suppose that \(\vec{v} \cdot \vec{v} = 0 \). Then \(v_1^2 + v_2^2 + v_3^2 = 0 \). Now the square of a real number is non-negative and if a sum of non-negative numbers is zero, then each term must be zero. It follows that \(v_1 = v_2 = v_3 = 0 \) and so \(\vec{v} = \vec{0} \). \(\square \)

Definition 2.4. If \(\vec{v} \in \mathbb{R}^3 \), then the norm or length of \(\vec{v} = (v_1, v_2, v_3) \) is the scalar
\[
\|v\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.
\]

It is interesting to note that if you know the norm, then you can calculate the dot product:
\[
(\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) = \vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}
\]
\[
(\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) = \vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}.
\]

Subtracting and dividing by 4 we get
\[
\vec{v} \cdot \vec{w} = \frac{1}{4} (((\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) - (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}))
\]
\[
= \frac{1}{4} (\|\vec{v} + \vec{w}\|^2 - \|\vec{v} - \vec{w}\|^2).
\]

Given two non-zero vectors \(\vec{v} \) and \(\vec{w} \) in space, note that we can define the angle \(\theta \) between \(\vec{v} \) and \(\vec{w} \). \(\vec{v} \) and \(\vec{w} \) lie in at least one plane (which is in fact unique, unless \(\vec{v} \) and \(\vec{w} \) are parallel). Now just measure the angle \(\theta \) between the \(\vec{v} \) and \(\vec{w} \) in this plane. By convention we always take \(0 \leq \theta \leq \pi \).
Theorem 2.5. If \vec{v} and \vec{w} are any two vectors in \mathbb{R}^3, then
\[\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta. \]

Proof. If \vec{v} is the zero vector, then both sides are equal to zero, so that they are equal to each other and the formula holds (note though, that in this case the angle θ is not determined).

By symmetry, we may assume that \vec{v} and \vec{w} are both non-zero. Let $\vec{u} = \vec{w} - \vec{v}$ and apply the law of cosines to the triangle with sides parallel to \vec{u}, \vec{v} and \vec{w}:
\[\|\vec{u}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2 - 2\|\vec{v}\|\|\vec{w}\| \cos \theta. \]

We have already seen that the LHS of this equation expands to
\[\vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w} = \|\vec{v}\|^2 - 2\vec{v} \cdot \vec{w} + \|\vec{w}\|^2. \]

Cancelling the common terms $\|\vec{v}\|^2$ and $\|\vec{w}\|^2$ from both sides, and dividing by 2, we get the desired formula. □

We can use (2.5) to find the angle between two vectors:

Example 2.6. Let $\vec{v} = -\hat{i} + \hat{k}$ and $\vec{w} = \hat{i} + \hat{j}$. Then
\[-1 = \vec{v} \cdot \vec{w} = \|\vec{v}\|\|\vec{w}\| \cos \theta = 2 \cos \theta. \]

Therefore $\cos \theta = -1/2$ and so $\theta = 2\pi/3$.

Definition 2.7. We say that two vectors \vec{v} and \vec{w} in \mathbb{R}^3 are orthogonal if $\vec{v} \cdot \vec{w} = 0$.

Remark 2.8. If neither \vec{v} nor \vec{w} are the zero vector, and $\vec{v} \cdot \vec{w} = 0$ then the angle between \vec{v} and \vec{w} is a right angle. Our convention is that the zero vector is orthogonal to every vector.

Example 2.9. \hat{i}, \hat{j} and \hat{k} are pairwise orthogonal.

Given two vectors \vec{v} and \vec{w}, we can project \vec{v} onto \vec{w}. The resulting vector is called the projection of \vec{v} onto \vec{w} and is denoted $\text{proj}_\vec{w} \vec{v}$. For example, if \vec{F} is a force and \vec{w} is a direction, then the projection of \vec{F} onto \vec{w} is the force in the direction of \vec{w}.

As $\text{proj}_\vec{w} \vec{v}$ is parallel to \vec{w}, we have
\[\text{proj}_\vec{w} \vec{v} = \lambda \vec{w}, \]
for some scalar λ. Let’s determine λ. Let’s deal with the case that $\lambda \geq 0$ (so that the angle θ between \vec{v} and \vec{w} is between 0 and $\pi/2$). If we take the norm of both sides, we get
\[\|\text{proj}_\vec{w} \vec{v}\| = \|\lambda \vec{w}\| = \lambda \|\vec{w}\|, \]
(note that $\lambda \geq 0$), so that

$$\lambda = \frac{||\text{proj}_{\vec{w}} \vec{v}||}{||\vec{w}||}.$$

But

$$\cos \theta = \frac{||\text{proj}_{\vec{w}} \vec{v}||}{||\vec{v}||},$$

so that

$$||\text{proj}_{\vec{w}} \vec{v}|| = ||\vec{v}|| \cos \theta.$$

Putting all of this together we get

$$\lambda = \frac{||\vec{v}|| \cos \theta}{||\vec{w}||} = \frac{||\vec{v}|| ||\vec{w}|| \cos \theta}{||\vec{w}||^2} = \frac{\vec{v} \cdot \vec{w}}{||\vec{w}||^2}.$$

There are a number of ways to deal with the case when $\lambda < 0$ (so that $\theta > \pi/2$). One can carry out a similar analysis to the one given above. Here is another way. Note that the angle ϕ between \vec{w} and $\vec{u} = -\vec{v}$ is equal to $\pi - \theta < \pi/2$. By what we already proved

$$\text{proj}_{\vec{w}} \vec{u} = \frac{\vec{u} \cdot \vec{w}}{||\vec{w}||^2} \vec{w}.$$

But $\text{proj}_{\vec{w}} \vec{u} = -\text{proj}_{\vec{w}} \vec{v}$ and $\vec{u} \cdot \vec{w} = -\vec{v} \cdot \vec{w}$, so we get the same formula in the end. To summarise:

Theorem 2.10. If \vec{v} and \vec{w} are two vectors in \mathbb{R}^3, where \vec{w} is not zero, then

$$\text{proj}_{\vec{w}} \vec{v} = \left(\frac{\vec{v} \cdot \vec{w}}{||\vec{w}||^2} \right) \vec{w}.$$

Example 2.11. Find the distance d between the line l containing the points $P_1 = (1, -1, 2)$ and $P_2 = (4, 1, 0)$ and the point $Q = (3, 2, 4)$.

Suppose that R is the closest point on the line l to the point Q. Note that \overrightarrow{QR} is orthogonal to the direction $\overrightarrow{P_1P_2}$ of the line. So we want the length of the vector $\overrightarrow{P_1Q} - \text{proj}_{\overrightarrow{P_1P_2}} \overrightarrow{P_1Q}$, that is, we want

$$d = ||\overrightarrow{P_1Q} - \text{proj}_{\overrightarrow{P_1P_2}} \overrightarrow{P_1Q}||.$$

Now

$$\overrightarrow{P_1Q} = (2, 3, 2) \quad \text{and} \quad \overrightarrow{P_1P_2} = (3, 2, -2).$$
We have
\[\|P_1P_2\|^2 = 3^2 + 2^2 + 2^2 = 17 \quad \text{and} \quad \overrightarrow{P_1P_2} \cdot \overrightarrow{P_1Q} = 6 + 6 - 4 = 8. \]

It follows that
\[\text{proj}_{\overrightarrow{P_1P_2}} \overrightarrow{P_1Q} = \frac{8}{17} (3, 2, -2). \]

Subtracting, we get
\[\overrightarrow{P_1Q} - \text{proj}_{\overrightarrow{P_1P_2}} \overrightarrow{P_1Q} = (2, 3, 2) - \frac{8}{17} (3, 2, -2) = \frac{1}{17} (10, 35, 50) = \frac{5}{17} (2, 7, 10). \]

Taking the length, we get
\[\frac{5}{17} (2^2 + 7^2 + 10^2)^{1/2} \approx 3.64. \]

Theorem 2.12. The angle subtended on the circumference of a circle by a diameter of the circle is always a right angle.

Proof. Suppose that \(P \) and \(Q \) are the two endpoints of a diameter of the circle and that \(R \) is a point on the circumference. We want to show that the angle between \(\overrightarrow{PR} \) and \(\overrightarrow{QR} \) is a right angle.

Let \(O \) be the centre of the circle. Then
\[\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR} \quad \text{and} \quad \overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR}. \]

Note that \(\overrightarrow{QO} = -\overrightarrow{PO} \). Therefore
\[
\overrightarrow{PR} \cdot \overrightarrow{QR} = (\overrightarrow{PO} + \overrightarrow{OR}) \cdot (\overrightarrow{QO} + \overrightarrow{OR}) \\
= (\overrightarrow{PO} + \overrightarrow{OR}) \cdot (\overrightarrow{OR} - \overrightarrow{PO}) \\
= \|\overrightarrow{OR}\|^2 - \|\overrightarrow{PO}\|^2 \\
= r^2 - r^2 = 0,
\]

where \(r \) is the radius of the circle. It follows that \(\overrightarrow{PR} \) and \(\overrightarrow{QR} \) are indeed orthogonal. \(\square \)