17. Vector fields

Definition 17.1. Let $A \subset \mathbb{R}^n$ be an open subset. A vector field on A is function $\vec{F} : A \to \mathbb{R}^n$.

One obvious way to get a vector field is to take the gradient of a differentiable function. If $f : A \to \mathbb{R}$, then

$$\nabla f : A \to \mathbb{R}^n,$$

is a vector field.

Definition 17.2. A vector field $\vec{F} : A \to \mathbb{R}^n$ is called a gradient (aka conservative) vector field if $\vec{F} = \nabla f$ for some differentiable function $f : A \to \mathbb{R}$.

Example 17.3. Let

$$\vec{F} : \mathbb{R}^3 - \{0\} \to \mathbb{R}^3,$$

be the vector field

$$\vec{F}(x, y, z) = \frac{cx}{(x^2 + y^2 + z^2)^{3/2}} \hat{i} + \frac{cy}{(x^2 + y^2 + z^2)^{3/2}} \hat{j} + \frac{cz}{(x^2 + y^2 + z^2)^{3/2}} \hat{k},$$

for some constant c. Then $\vec{F}(x, y, z)$ is the gradient of

$$f : \mathbb{R}^3 - \{0\} \to \mathbb{R},$$

given by

$$f(x, y, z) = -\frac{c}{(x^2 + y^2 + z^2)^{1/2}}.$$

So \vec{F} is a conservative vector field. Notice that if $c < 0$ then \vec{F} models the gravitational force and f is the potential (note that unfortunately mathematicians and physicists have different sign conventions for f).

Proposition 17.4. If \vec{F} is a conservative vector field and \vec{F} is C^1 function, then

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i},$$

for all i and j between 1 and n.

Proof. If \vec{F} is conservative, then we may find a differentiable function $f : A \to \mathbb{R}^n$ such that

$$F_i = \frac{\partial f}{\partial x_i}.$$
As F_i is C^1 for each i, it follows that f is C^2. But then

\[
\frac{\partial F_i}{\partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial F_j}{\partial x_i}.
\]

Notice that (17.4) is a negative result; one can use it show that various vector fields are not conservative.

Example 17.5. Let

\[
\vec{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{given by} \quad \vec{F}(x, y) = (-y, x).
\]

Then

\[
\frac{\partial F_1}{\partial y} = -1 \quad \text{and} \quad \frac{\partial F_2}{\partial x} = 1 \neq -1.
\]

So \vec{F} is not conservative.

Example 17.6. Let

\[
\vec{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{given by} \quad \vec{F}(x, y) = (y, x + y).
\]

Then

\[
\frac{\partial F_1}{\partial y} = 1 \quad \text{and} \quad \frac{\partial F_2}{\partial x} = 1,
\]

so \vec{F} might be conservative. Let’s try to find

\[
f : \mathbb{R}^2 \rightarrow \mathbb{R} \quad \text{such that} \quad \nabla f(x, y) = (y, x + y).
\]

If f exists, then we must have

\[
\frac{\partial f}{\partial x} = y \quad \text{and} \quad \frac{\partial f}{\partial y} = x + y.
\]

If we integrate the first equation with respect to x, then we get

\[
f(x, y) = xy + g(y).
\]

Note that $g(y)$ is not just a constant but it is a function of y. There are two ways to see this. One way, is to imagine that for every value of y, we have a separate differential equation. If we integrate both sides, we get an arbitrary constant c. As we vary y, c varies, so that $c = g(y)$ is a function of y. On the other hand, if to take the partial derivatives
of \(g(y) \) with respect to \(x \), then we get 0. Now we take \(xy + g(y) \) and differentiate with respect to \(y \), to get
\[
x + y = \frac{\partial(xy + g(y))}{\partial y} = x + \frac{dg}{dy}(y).
\]
So
\[
g'(y) = y.
\]
Integrating both sides with respect to \(y \) we get
\[
g(y) = \frac{y^2}{2} + c.
\]
It follows that
\[
\nabla(xy + \frac{y^2}{2}) = (y, x + y),
\]
so that \(\vec{F} \) is conservative.

Definition 17.7. If \(\vec{F}: A \rightarrow \mathbb{R}^n \) is a vector field, we say that a parametrised differentiable curve \(\vec{r}: I \rightarrow A \) is a **flow line** for \(\vec{F} \), if
\[
\vec{r}'(t) = \vec{F}(\vec{r}(t)),
\]
for all \(t \in I \).

Example 17.8. Let
\[
\vec{F}: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{given by} \quad \vec{F}(x, y) = (-y, x).
\]
We check that
\[
\vec{r}: \mathbb{R} \rightarrow \mathbb{R}^2 \quad \text{given by} \quad \vec{r}(t) = (a \cos t, a \sin t),
\]
is a flow line. In fact
\[
\vec{r}'(t) = (-a \sin t, a \cos t),
\]
and so
\[
\vec{F}(\vec{r}(t)) = \vec{F}(a \cos t, a \sin t)
\]
\[
= \vec{r}'(t),
\]
so that \(\vec{r}(t) \) is indeed a flow line.

Example 17.9. Let
\[
\vec{F}: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{given by} \quad \vec{F}(x, y) = (-x, y).
\]
Let’s find a flow line through the point \((a, b)\). We have
\[
x'(t) = -x(t) \quad x(0) = a
\]
\[
y'(t) = y(t) \quad y(0) = b.
\]
Therefore,
\[
x(t) = ae^{-t} \quad \text{and} \quad y(t) = be^t,
\]
gives the flow line through \((a, b)\).
Example 17.10. Let
\[\vec{F} : \mathbb{R}^2 \to \mathbb{R}^2 \]
given by
\[\vec{F}(x, y) = (x^2 - y^2, 2xy). \]

Try
\[x(t) = 2a \cos t \sin t \]
\[y(t) = 2a \sin^2 t. \]

Then
\[x'(t) = 2a(- \sin^2 t + \cos^t) \]
\[= \frac{x^2(t) - y^2(t)}{y(t)}. \]

Similarly
\[y'(t) = 4a \cos t \sin t \]
\[= \frac{2x(t)y(t)}{y(t)}. \]

So
\[\vec{r}'(t) = \frac{\vec{F}(\vec{r}(t))}{f(t)}. \]

So the curves themselves are flow lines, but this is not the correct parametrisation. The flow lines are circles passing through the origin, with centre along the y-axis.

Example 17.11. Let
\[\vec{F} : \mathbb{R}^2 - \{(0, 0)\} \to \mathbb{R}^2 \]
given by
\[\vec{F}(x, y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right). \]

Then
\[\frac{\partial F_1}{\partial y}(x, y) = - \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}. \]

and
\[\frac{\partial F_2}{\partial x}(x, y) = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}. \]

So \(\vec{F} \) might be conservative. Let’s find the flow lines. Try
\[x(t) = a \cos \left(\frac{t}{a^2}\right) \]
\[y(t) = a \sin \left(\frac{t}{a^2}\right). \]
Then

\[x'(t) = -\frac{1}{a} \sin \left(\frac{t}{a^2} \right) \]
\[= -\frac{y}{x^2 + y^2}. \]

Similarly

\[y'(t) = \frac{1}{a} \cos \left(\frac{t}{a^2} \right) \]
\[= \frac{x}{x^2 + y^2}. \]

So the flow lines are closed curves. In fact this means that \(\vec{F} \) is not conservative.