
16. Moving frames

Definition 16.1. We say a parametrised differentiable curve ~r : I −→
Rn is regular if ~r′(t) 6= 0 (the speed is never zero).

We say that ~r(t) is smooth if ~r(t) is C∞.

Given a regular smooth parametrised differentiable curve ~r : I −→
R3, we can parametrise by arclength, in which case we get can write
down the unit tangent vector

~T =
d~r

ds
(s).

The curvature κ(s) is defined as the magnitude of

d~T

ds
(s).

If the curvature is nowhere zero, then we define the normal vector
~N(s) as the unit vector pointing in the direction of the derivative of
the tangent vector:

d~T

ds
(s) = κ(s) ~N(s).

We have already seen that ~T (s) and ~N(s) are orthogonal.

Definition 16.2.

~B(s) = ~T (s)× ~N(s).

is called the binormal vector.

The three vectors ~T (s), ~N(s), and ~B(s) are unit vectors and pairwise
orthogonal, that is, these vectors are an orthonormal basis of R3. Notice
that ~T (s), ~N(s), and ~B(s) are a right handed set.

We call these vectors a moving frame or the Frenet-Serret frame.
Now

d ~B

ds
(s)× ~B(s) = 0,

as

‖ ~B(s) · ~B(s)‖ = 1.

It follows that

d ~B

ds
(s),
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lies in the plane spanned by ~T (s) and ~N(s).

d ~B

ds
(s) · ~T (s) =

d(~T × ~N)

ds
(s) · ~T (s)

=

(
d~T

ds
(s)× ~N(s) + ~T (s)× d ~N

ds
(s)

)
· ~T (s)

= κ(s)( ~N(s)× ~N(s)) · ~T (s) + (~T (s)× ~N(s)) · ~T (s)

= 0 + (~T (s)× ~T (s)) · ~N(s)

= 0.

It follows that
d ~B

ds
(s) and ~T (s),

are orthogonal, and so

d ~B

ds
(s) is parallel to ~N(s).

Definition 16.3. The torsion of the curve ~r(s) is the unique scalar
τ(s) such that

d ~B

ds
(s) = −τ(s) ~N(s).

If we have a helix, the sign of the torsion distinguishes between a
right handed helix and a left handed helix. The magnitude of the
torsion measures how spread out the helix is (the curvature measures
how tight the turns are). Now

d ~N

ds
(s)

is orthogonal to ~N(s), and so it is a linear combination of ~T (s) and
~B(s). In fact,

d ~N

ds
(s) =

d( ~B × ~T )

ds
(s)

=
d ~B

ds
(s)× ~T (s) + ~B(s)× d~T

ds
(s)

= −τ(s) ~N(s)× ~T (s) + κ(s) ~B(s)× ~N(s)

= τ(s) ~B(s)− κ(s)~T (s)

= −κ(s)~T (s) + τ(s) ~B(s).
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Theorem 16.4 (Frenet Formulae). Let ~r : I −→ R3 be a regular smooth
parametrised curve. Then ~T ′(s)

~N ′(s)
~B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 ~T (s)
~N(s)
~B(s)

 .

Of course, s represents the arclength parameter and primes denote
derivatives with respect to s. Notice that the 3×3 matrix A appearing
in (16.4) is skew-symmetric, that is At = −A. The way we have
written the Frenet formulae, it appears that we have two 3× 1 vectors;
strictly speaking these are the rows of two 3× 3 matrices.

Theorem 16.5. Let I ⊂ R be an open interval and suppose we are
given two smooth functions

κ : I −→ R and τ : I −→ R,
where κ(s) > 0 for all s ∈ I.

Then there is a regular smooth curve ~r : I −→ R3 parametrised by
arclength with curvature κ(s) and torsion τ(s). Further, any two such
curves are congruent, that is, they are the same up to translation and
rotation.

Remark 16.6. Uniqueness is one of the hwk problems.

Let’s consider the example of the helix:

Example 16.7.

~r(s) = (a cos
s

c
, a sin

s

c
,
bs

c
),

where
c2 = a2 + b2.

Let’s assume that a > 0. By convention c > 0. Then

~T (s) =
1

c
(−a sin

s

c
, a cos

s

c
, b).

Hence
dT

ds
(s) =

−a
c2

(cos
s

c
, sin

s

c
, 0) =

a

c2
(− cos

s

c
,− sin

s

c
, 0) =

a

c2
~N(s)

It follows that

κ(s) =
a

c2
and ~N(s) = (− cos

s

c
,− sin

s

c
, 0).

Finally,

~B(s) =

∣∣∣∣∣∣
ı̂ ̂ k̂

−a
c

sin s
c

a
c

cos s
c

b
c

− cos s
c
− sin s

c
0

∣∣∣∣∣∣
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It follows that

~B(s) = (
b

c
sin

s

c
,−b

c
cos

s

c
,
a

c
) =

1

c
(b sin

s

c
,−b cos

s

c
, a).

Finally, note that

d ~B

ds
(s) =

b

c2
(cos

s

c
, sin

s

c
, 0) = − b

c2
~N.

Using this we can compute the torsion:

τ(s) =
b

c2
.

It is interesting to use the torsion and curvature to characterise var-
ious geometric properties of curves. Let’s say that a parametrised dif-
ferentiable curve ~r : I −→ R3 is planar if there is a plane Π which
contains the image of ~r.

Theorem 16.8. A regular smooth curve ~r : I −→ R3 is planar if and
only if the torsion is zero.

Proof. We may assume that the curve passes through the origin.
Suppose that ~r is planar. Then the image of ~r is contained in a

plane Π. As the curve passes through the origin, Π contains the origin
as well. Note that the unit tangent vector ~T (s) and the unit normal

vector ~N(s) are contained in Π. It follows that ~B(s) is a normal vector

to the plane; as ~B(s) is a unit vector, it must be constant. But then

d ~B

ds
(s) = ~0 = 0 ~N(s),

so that the torsion is zero.
Now suppose that the torsion is zero. Then

dB

ds
(s) = 0 ~N = ~0,

so that ~B(s) = B0, is a constant vector. Consider the function

f(s) = ~r(s) · ~B(s) = ~r(s) · ~B0.

Then

df

ds
(s) =

d(~r × ~B0)

ds
(s)

= ~T (s). ~B0 = 0.

So f(s) is constant. It is zero when ~r(a) = ~0 (the curve passes through
the origin) so that f(s) = 0. But then ~r(s) is always orthogonal to a
fixed vector, so that ~r is contained in a plane, that is, C is planar. �
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It is interesting to try to figure out how to characterise curves which
are contained in spheres or cylinders.
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