
12. Chain rule

Theorem 12.1 (Chain Rule). Let U ⊂ Rn and let V ⊂ Rm be two
open subsets. Let f : U −→ V and g : V −→ Rp be two functions.
If f is differentiable at P and g is differentiable at Q = f(P ), then
g ◦ f : U −→ Rp is differentiable at P , with derivative:

D(g ◦ f)(P ) = (D(g)(Q))(D(f)(P )).

It is interesting to untwist this result in specific cases. Suppose we
are given

f : R −→ R2 and g : R2 −→ R.
So f(x) = (f1(x), f2(x)) and w = g(y, z). Then

Df(P ) =

(
df1
dx

(P )
df2
dx

(P )

)
and Dg(Q) = (

∂g

∂y
(Q),

∂g

∂z
(Q)).

So

d(g ◦ f)

dx
= D(g◦f)(P ) = Dg(Q)Df(P ) =

∂g

∂y
(Q)

df1

dx
(P )+

∂g

∂z
(Q)

df2

dx
(P ).

Example 12.2. Suppose that f(x) = (x2, x3) and g(y, z) = yz. If we
apply the chain rule, we get

D(g ◦ f)(x) = z(2x) + y(3x2) = 5x4.

On the other hand (g ◦ f)(x) = x5, and of course

dx5

dx
= 5x4.

Now suppose that

f : R2 −→ R2 and g : R2 −→ R
So f(x, y) = (f1(x, y), f2(x, y)) and w = g(u, v). Then

Df(P ) =

(
∂f1
∂x

(P ) ∂f2
∂x

(P )
∂f2
∂x

(P ) ∂f2
∂x

(P )

)
and Dg(Q) = (

∂g

∂u
(Q),

∂g

∂v
(Q)).

In this case

D(g ◦ f) = (
∂(g ◦ f)

∂x
,
∂(g ◦ f)

∂y
)

= (
∂g

∂u
(Q)

∂f1

∂x
(P ) +

∂g

∂v
(Q)

∂f2

∂x
(P ),

∂g

∂u
(Q)

∂f1

∂y
(P ) +

∂g

∂v
(Q)

∂f2

∂y
(P )).

= (
∂g

∂u
(Q)

∂u

∂x
(P ) +

∂g

∂v
(Q)

∂v

∂x
(P ),

∂g

∂u
(Q)

∂u

∂y
(P ) +

∂g

∂v
(Q)

∂v

∂y
(P ))

= (
∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
,
∂g

∂u

∂u

∂y
+
∂g

∂v

∂v

∂y
),
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since u = f1(x, y) and v = f2(x, y). Notice that in the last line we were
a bit sloppy and dropped P and Q.

If we split this vector equation into its components we get

∂(g ◦ f)

∂x
=
∂g

∂u
(Q)

∂f1

∂x
(P ) +

∂g

∂v
(Q)

∂f2

∂x
(P )

∂(g ◦ f)

∂y
=
∂g

∂u
(Q)

∂f1

∂y
(P ) +

∂g

∂v
(Q)

∂f2

∂y
(P ).

Again, we could replace f1 by u and f2 by v in these equations, and
maybe even drop P and Q.

Example 12.3. Suppose that f(x, y) = (cos(xy), ex−y) and g(u, v) =
u2 sin v. If we apply the chain rule, we get

D(g ◦ f)(x) = (2u sin v(−y sinxy) + u2 cos v(ex−y),−2u sin vx sinxy − u2 cos vex−y

= (2 cos(xy) sin(ex−y)(−y sinxy) + cos2(xy) cos(ex−y)ex−y, . . . ).

In general, the (i, k) entry of D(g ◦ f)(P ), that is

∂(g ◦ f)i
∂xk

is given by the dot product of the ith row of Dg(Q) and the kth column
of Df(P ),

∂(g ◦ f)i
∂xk

=
m∑
j=1

∂gi
∂yj

(Q)
∂fj
∂xi

(P ).

If z = (g ◦ f)(P ), then we get

∂zi
∂xk

=
m∑
j=1

∂zi
∂yj

(Q)
∂yj
∂xi

(P ).

We can use the chain rule to prove some of the simple rules for
derivatives. Suppose that we have

f : Rn −→ Rm and g : Rn −→ Rm.

Suppose that f and g are differentiable at P . What about f + g?
Well there is a function

a : R2m −→ Rm,

which sends (~u,~v) ∈ Rm × Rm to the sum ~u + ~v. In coordinates
(u1, u2, . . . , um, v1, v2, . . . , vm),

a(u1, u2, . . . , um, v1, v2, . . . , vm) = (u1 + v1, u2 + v2, . . . , um + vm).
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Now a is differentiable (it is a polynomial, linear even). There is func-
tion

h : Rn −→ R2m,

which sends Q to (f(Q), g(Q)). The composition a ◦ h : Rn −→ Rm is
the function we want to differentiate, it sends P to f(P ) + g(P ). The
chain rule says that that the function is differentiable at P and

D(f + g)(P ) = Df(P ) +Dg(P ).

Now suppose that m = 1. Instead of a, consider the function

m : R2 −→ R,

given by m(x, y) = xy. Then m is differentiable, with derivative

Dm(x, y) = (y, x).

So the chain rule says the composition of h and m, namely the func-
tion which sends P to the product f(P )g(P ) is differentiable and the
derivative satisfies the usual rule

D(fg)(P ) = g(P )D(f)(P ) + f(P )D(g)(P ).

Here is another example of the chain rule, suppose

x = r cos θ

y = r sin θ.

Then

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r

=
∂f

∂x
cos θ +

∂f

∂y
sin θ.

Similarly,

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ

= −∂f
∂x
r sin θ +

∂f

∂y
r cos θ.

We can rewrite this as(
∂
∂r
∂
∂θ

)
=

(
cos θ sin θ
−r sin θ r cos θ

)(
∂
∂x
∂
∂y

)
Now the determinant of(

cos θ sin θ
−r sin θ r cos θ

)
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is

r(cos2 θ + sin2 θ) = r.

So if r 6= 0, then we can invert the matrix above and we get(
∂
∂x
∂
∂y

)
=

1

r

(
r cos θ − sin θ
r sin θ cos θ

)(
∂
∂r
∂
∂θ

)
We now turn to a proof of the chain rule. We will need:

Lemma 12.4. Let A ⊂ Rn be an open subset and let f : A −→ Rm be
a function.

If f is differentiable at P , then there is a constant M ≥ 0 and δ > 0

such that if ‖
−→
PQ‖ < δ, then

‖f(Q)− f(P )‖ < M‖
−→
PQ‖.

Proof. As f is differentiable at P , there is a constant δ > 0 such that

if ‖
−→
PQ‖ < δ, then

‖f(Q)− f(P )−Df(P )
−→
PQ‖

‖
−→
PQ‖

< 1.

Hence

‖f(Q)− f(P )−Df(P )
−→
PQ‖ < ‖

−→
PQ‖.

But then

‖f(Q)− f(P )‖ = ‖f(Q)− f(P )−Df(P )
−→
PQ+Df(P )

−→
PQ‖

≤ ‖f(Q)− f(P )−Df(P )
−→
PQ‖+ ‖Df(P )

−→
PQ‖

≤ ‖
−→
PQ‖+K‖

−→
PQ‖

= M‖
−→
PQ‖,

where M = 1 +K. �

Proof of (12.1). Let’s fix some notation. We want the derivative at P .
Let Q = f(P ). Let P ′ be a point in U (which we imagine is close to
P ). Finally, let Q′ = f(P ′) (so if P ′ is close to P , then we expect Q′

to be close to Q).
The trick is to carefully define an auxiliary function G : V −→ Rp,

G(Q′) =

g(Q′)−g(Q)−Dg(Q)(
−−→
QQ′)

‖
−−→
QQ′‖

if Q′ 6= Q

~0 if Q′ = Q.
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Then G is continuous at Q = f(P ), as g is differentiable at Q. Now,

(g ◦ f)(P ′)− (g ◦ f)(P )−Dg(Q)Df(P )(
−−→
PP ′)

‖
−−→
PP ′‖

= Dg(Q)
f(P ′)− f(P )−Df(P )(

−−→
PP ′)

‖
−−→
PP ′‖

+G(f(P ′))
‖f(P ′)− f(P )‖
‖
−−→
PP ′‖

.

As P ′ approaches P , note that

f(P ′)− f(P )−Df(P )(
−−→
PP ′)

‖
−−→
PP ′‖

,

and G(P ′) both approach zero and

‖f(P ′)− f(P )‖
‖
−−→
PP ′‖

≤M.

So then

(g ◦ f)(P ′)− (g ◦ f)(P )−Dg(Q)Df(P )(
−−→
PP ′)

‖
−−→
PP ′‖

,

approaches zero as well, which is what we want. �
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