12. Chain rule

Theorem 12.1 (Chain Rule). Let $U \subset \mathbb{R}^{n}$ and let $V \subset \mathbb{R}^{m}$ be two open subsets. Let $f: U \longrightarrow V$ and $g: V \longrightarrow \mathbb{R}^{p}$ be two functions. If f is differentiable at P and g is differentiable at $Q=f(P)$, then $g \circ f: U \longrightarrow \mathbb{R}^{p}$ is differentiable at P, with derivative:

$$
D(g \circ f)(P)=(D(g)(Q))(D(f)(P)) .
$$

It is interesting to untwist this result in specific cases. Suppose we are given

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^{2} \quad \text { and } \quad g: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

So $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ and $w=g(y, z)$. Then

$$
D f(P)=\binom{\frac{d f_{1}}{d x}(P)}{\frac{d f_{2}}{d x}(P)} \quad \text { and } \quad D g(Q)=\left(\frac{\partial g}{\partial y}(Q), \frac{\partial g}{\partial z}(Q)\right)
$$

So

$$
\frac{d(g \circ f)}{d x}=D(g \circ f)(P)=D g(Q) D f(P)=\frac{\partial g}{\partial y}(Q) \frac{d f_{1}}{d x}(P)+\frac{\partial g}{\partial z}(Q) \frac{d f_{2}}{d x}(P)
$$

Example 12.2. Suppose that $f(x)=\left(x^{2}, x^{3}\right)$ and $g(y, z)=y z$. If we apply the chain rule, we get

$$
D(g \circ f)(x)=z(2 x)+y\left(3 x^{2}\right)=5 x^{4} .
$$

On the other hand $(g \circ f)(x)=x^{5}$, and of course

$$
\frac{d x^{5}}{d x}=5 x^{4}
$$

Now suppose that

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad \text { and } \quad g: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

So $f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$ and $w=g(u, v)$. Then

$$
D f(P)=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial f_{2}}(P) & \frac{\partial f_{2}}{\partial f^{2}}(P) \\
\frac{\partial f_{2}}{\partial x}(P) & \frac{\partial f_{2}}{\partial x}(P)
\end{array}\right) \quad \text { and } \quad D g(Q)=\left(\frac{\partial g}{\partial u}(Q), \frac{\partial g}{\partial v}(Q)\right)
$$

In this case

$$
\begin{aligned}
D(g \circ f) & =\left(\frac{\partial(g \circ f)}{\partial x}, \frac{\partial(g \circ f)}{\partial y}\right) \\
& =\left(\frac{\partial g}{\partial u}(Q) \frac{\partial f_{1}}{\partial x}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial f_{2}}{\partial x}(P), \frac{\partial g}{\partial u}(Q) \frac{\partial f_{1}}{\partial y}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial f_{2}}{\partial y}(P)\right) . \\
& =\left(\frac{\partial g}{\partial u}(Q) \frac{\partial u}{\partial x}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial v}{\partial x}(P), \frac{\partial g}{\partial u}(Q) \frac{\partial u}{\partial y}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial v}{\partial y}(P)\right) \\
& =\left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial x}, \frac{\partial g}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial y}\right),
\end{aligned}
$$

since $u=f_{1}(x, y)$ and $v=f_{2}(x, y)$. Notice that in the last line we were a bit sloppy and dropped P and Q.

If we split this vector equation into its components we get

$$
\begin{aligned}
& \frac{\partial(g \circ f)}{\partial x}=\frac{\partial g}{\partial u}(Q) \frac{\partial f_{1}}{\partial x}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial f_{2}}{\partial x}(P) \\
& \frac{\partial(g \circ f)}{\partial y}=\frac{\partial g}{\partial u}(Q) \frac{\partial f_{1}}{\partial y}(P)+\frac{\partial g}{\partial v}(Q) \frac{\partial f_{2}}{\partial y}(P)
\end{aligned}
$$

Again, we could replace f_{1} by u and f_{2} by v in these equations, and maybe even drop P and Q.

Example 12.3. Suppose that $f(x, y)=\left(\cos (x y), e^{x-y}\right)$ and $g(u, v)=$ $u^{2} \sin v$. If we apply the chain rule, we get

$$
\begin{aligned}
D(g \circ f)(x) & =\left(2 u \sin v(-y \sin x y)+u^{2} \cos v\left(e^{x-y}\right),-2 u \sin v x \sin x y-u^{2} \cos v e^{x-y}\right. \\
& =\left(2 \cos (x y) \sin \left(e^{x-y}\right)(-y \sin x y)+\cos ^{2}(x y) \cos \left(e^{x-y}\right) e^{x-y}, \ldots\right) .
\end{aligned}
$$

In general, the (i, k) entry of $D(g \circ f)(P)$, that is

$$
\frac{\partial(g \circ f)_{i}}{\partial x_{k}}
$$

is given by the dot product of the i th row of $D g(Q)$ and the k th column of $D f(P)$,

$$
\frac{\partial(g \circ f)_{i}}{\partial x_{k}}=\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial y_{j}}(Q) \frac{\partial f_{j}}{\partial x_{i}}(P) .
$$

If $z=(g \circ f)(P)$, then we get

$$
\frac{\partial z_{i}}{\partial x_{k}}=\sum_{j=1}^{m} \frac{\partial z_{i}}{\partial y_{j}}(Q) \frac{\partial y_{j}}{\partial x_{i}}(P) .
$$

We can use the chain rule to prove some of the simple rules for derivatives. Suppose that we have

$$
f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad \text { and } \quad g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

Suppose that f and g are differentiable at P. What about $f+g$? Well there is a function

$$
a: \mathbb{R}^{2 m} \longrightarrow \mathbb{R}^{m}
$$

which sends $(\vec{u}, \vec{v}) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ to the sum $\vec{u}+\vec{v}$. In coordinates $\left(u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right)$,

$$
a\left(u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{m}+v_{m}\right) .
$$

Now a is differentiable (it is a polynomial, linear even). There is function

$$
h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{2 m}
$$

which sends Q to $(f(Q), g(Q))$. The composition $a \circ h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is the function we want to differentiate, it sends P to $f(P)+g(P)$. The chain rule says that that the function is differentiable at P and

$$
D(f+g)(P)=D f(P)+D g(P)
$$

Now suppose that $m=1$. Instead of a, consider the function

$$
m: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

given by $m(x, y)=x y$. Then m is differentiable, with derivative

$$
\operatorname{Dm}(x, y)=(y, x) .
$$

So the chain rule says the composition of h and m, namely the function which sends P to the product $f(P) g(P)$ is differentiable and the derivative satisfies the usual rule

$$
D(f g)(P)=g(P) D(f)(P)+f(P) D(g)(P)
$$

Here is another example of the chain rule, suppose

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& =\frac{\partial f}{\partial x} \cos \theta+\frac{\partial f}{\partial y} \sin \theta
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
& =-\frac{\partial f}{\partial x} r \sin \theta+\frac{\partial f}{\partial y} r \cos \theta .
\end{aligned}
$$

We can rewrite this as

$$
\binom{\frac{\partial}{\partial r}}{\frac{\partial}{\partial \theta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}
$$

Now the determinant of

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)
$$

is

$$
r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

So if $r \neq 0$, then we can invert the matrix above and we get

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & -\sin \theta \\
r \sin \theta & \cos \theta
\end{array}\right)\binom{\frac{\partial}{\partial r}}{\frac{\partial}{\partial \theta}}
$$

We now turn to a proof of the chain rule. We will need:
Lemma 12.4. Let $A \subset \mathbb{R}^{n}$ be an open subset and let $f: A \longrightarrow \mathbb{R}^{m}$ be a function.

If f is differentiable at P, then there is a constant $M \geq 0$ and $\delta>0$ such that if $\|\overrightarrow{P Q}\|<\delta$, then

$$
\|f(Q)-f(P)\|<M\|\overrightarrow{P Q}\|
$$

Proof. As f is differentiable at P, there is a constant $\delta>0$ such that if $\|\overrightarrow{P Q}\|<\delta$, then

$$
\frac{\|f(Q)-f(P)-D f(P) \overrightarrow{P Q}\|}{\|\overrightarrow{P Q}\|}<1
$$

Hence

$$
\|f(Q)-f(P)-D f(P) \overrightarrow{P Q}\|<\|\overrightarrow{P Q}\|
$$

But then

$$
\begin{aligned}
\|f(Q)-f(P)\| & =\|f(Q)-f(P)-D f(P) \overrightarrow{P Q}+D f(P) \overrightarrow{P Q}\| \\
& \leq\|f(Q)-f(P)-D f(P) \overrightarrow{P Q}\|+\|D f(P) \overrightarrow{P Q}\| \\
& \leq\|\overrightarrow{P Q}\|+K\|\overrightarrow{P Q}\| \\
& =M\|\overrightarrow{P Q}\|
\end{aligned}
$$

where $M=1+K$.
Proof of (12.1). Let's fix some notation. We want the derivative at P. Let $Q=f(P)$. Let P^{\prime} be a point in U (which we imagine is close to P). Finally, let $Q^{\prime}=f\left(P^{\prime}\right)$ (so if P^{\prime} is close to P, then we expect Q^{\prime} to be close to Q).

The trick is to carefully define an auxiliary function $G: V \longrightarrow \mathbb{R}^{p}$,

$$
G\left(Q^{\prime}\right)= \begin{cases}\frac{g\left(Q^{\prime}\right)-g(Q)-D g(Q)\left(\overrightarrow{Q Q^{\prime}}\right)}{\left\|\overrightarrow{Q Q^{\prime}}\right\|} & \text { if } Q^{\prime} \neq Q \\ \overrightarrow{0} & \text { if } Q^{\prime}=Q\end{cases}
$$

Then G is continuous at $Q=f(P)$, as g is differentiable at Q. Now,

$$
\begin{aligned}
& \frac{(g \circ f)\left(P^{\prime}\right)-(g \circ f)(P)-D g(Q) D f(P)\left(\overrightarrow{P P^{\prime}}\right)}{\left\|\overrightarrow{P P^{\prime}}\right\|} \\
& =D g(Q) \frac{f\left(P^{\prime}\right)-f(P)-D f(P)\left(\overrightarrow{P P^{\prime}}\right)}{\left\|\overrightarrow{P P^{\prime}}\right\|}+G\left(f\left(P^{\prime}\right)\right) \frac{\left\|f\left(P^{\prime}\right)-f(P)\right\|}{\left\|\overrightarrow{P P^{\prime}}\right\|}
\end{aligned}
$$

As P^{\prime} approaches P, note that

$$
\frac{f\left(P^{\prime}\right)-f(P)-D f(P)\left(\overrightarrow{P P^{\prime}}\right)}{\left\|\overrightarrow{P P^{\prime}}\right\|}
$$

and $G\left(P^{\prime}\right)$ both approach zero and

$$
\frac{\left\|f\left(P^{\prime}\right)-f(P)\right\|}{\left\|\overrightarrow{P P^{\prime}}\right\|} \leq M
$$

So then

$$
\frac{(g \circ f)\left(P^{\prime}\right)-(g \circ f)(P)-D g(Q) D f(P)\left(\overrightarrow{P P^{\prime}}\right)}{\left\|\overrightarrow{P P^{\prime}}\right\|}
$$

approaches zero as well, which is what we want.

