
11. Higher derivatives

We first record a very useful:

Theorem 11.1. Let A ⊂ Rn be an open subset. Let f : A −→ Rm and
g : A −→ Rm be two functions and suppose that P ∈ A. Let λ ∈ A be
a scalar.

If f and g are differentiable at P , then

(1) f+g is differentiable at P and D(f+g)(P ) = Df(P )+Dg(P ).
(2) λ · f is differentiable at P and D(λf)(P ) = λD(f)(P ).

Now suppose that m = 1.

(3) fg is differentiable at P and D(fg)(P ) = D(f)(P )g(P )+f(P )D(g)(P ).
(4) If g(P ) 6= 0, then fg is differentiable at P and

D(f/g)(P ) =
D(f)(P )g(P )− f(P )D(g)(P )

g2(P )
.

If the partial derivatives of f and g exist and are continuous, then
(11.1) follows from the well-known single variable case. One can prove
the general case of (11.1), by hand (basically lots of ε’s and δ’s). How-
ever, perhaps the best way to prove (11.1) is to use the chain rule,
proved in the next section.

What about higher derivatives?

Definition 11.2. Let A ⊂ Rn be an open set and let f : A −→ R be a
function. The kth order partial derivative of f , with respect to
the variables xi1, xi2, . . .xik is the iterated derivative

∂kf

∂xik∂xik−1
. . . ∂xi2∂xi1

(P ) =
∂

∂xik

(
∂

∂xik−1

(. . .
∂

∂xi2

(
∂f

∂xi1

) . . . ))(P ).

We will also use the notation fxik
xik−1

...xi2
xi1

(P ).

Example 11.3. Let f : R2 −→ R be the function f(x, t) = e−at cosx.
Then

fxx(x, t) =
∂

∂x
(
∂

∂x
(e−at cosx))

=
∂

∂x
(−e−at sinx)

= −e−at cosx.
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On the other hand,

fxt(x, t) =
∂

∂x
(
∂

∂t
(e−at cosx))

=
∂

∂x
(−ae−at cosx)

= ae−at sinx.

Similarly,

ftx(x, t) =
∂

∂t
(
∂

∂x
(e−at cosx))

=
∂

∂t
(−e−at sinx)

= ae−at sinx.

Note that
ft(x, t) = −ae−at cosx.

It follows that f(x, t) is a solution to the Heat equation:

a
∂2f

∂x2
=
∂f

∂t
.

Definition 11.4. Let A ⊂ Rn be an open subset and let f : A −→ Rm

be a function. We say that f is of class Ck if all kth partial derivatives
exist and are continuous.

We say that f is of class C∞ (aka smooth) if f is of class Ck for
all k.

In lecture 10 we saw that if f is C1, then it is differentiable.

Theorem 11.5. Let A ⊂ Rn be an open subset and let f : A −→ Rm

be a function.
If f is C2, then

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

,

for all 1 ≤ i, j ≤ n.

The proof uses the Mean Value Theorem.
Suppose we are given A ⊂ R an open subset and a function f : A −→

R of class C1. The objective is to find a solution to the equation

f(x) = 0.

Newton’s method proceeds as follows. Start with some x0 ∈ A. The
best linear approximation to f(x) in a neighbourhood of x0 is given by

f(x0) + f ′(x0)(x− x0).
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If f ′(x0) 6= 0, then the linear equation

f(x0) + f ′(x0)(x− x0) = 0,

has the unique solution,

x1 = x0 −
f(x0)

f ′(x0)
.

Now just keep going (assuming that f ′(xi) is never zero),

x1 = x0 −
f(x0)

f ′(x0)

x2 = x1 −
f(x1)

f ′(x1)
... =

...

xn = xn−1 −
f(xn−1)

f ′(xn−1)
.

Claim 11.6. Suppose that x∞ = limn→∞ xn exists and f ′(x∞) =6= 0.
Then f(x∞) = 0.

Proof of (11.6). Indeed, we have

xn = xn−1 −
f(xn−1)

f ′(xn−1)
.

Take the limit as n goes to ∞ of both sides:

x∞ = x∞ −
f(x∞)

f ′(x∞)
,

we we used the fact that f and f ′ are continuous and f ′(x∞) 6= 0. But
then

f(x∞) = 0,

as claimed. �

Suppose that A ⊂ Rn is open and f : A −→ Rn is a function. Sup-
pose that f is C1 (that is, suppose each of the coordinate functions
f1, f2, . . . , fn is C1).

The objective is to find a solution to the equation

f(P ) = ~0.

Start with any point P0 ∈ A. The best linear approximation to f at
P0 is given by

f(P0) +Df(P0)
−−→
PP0.
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Assume that Df(P0) is an invertible matrix, that is, assume that
detDf(P0) 6= 0. Then the inverse matrix Df(P0)

−1 exists and the
unique solution to the linear equation

f(P0) +Df(P0)
−−→
PP0 = ~0,

is given by

P1 = P0 −Df(P0)
−1f(P0).

Notice that matrix multiplication is not commutative, so that there is
a difference between Df(P0)

−1f(P0) and f(P0)Df(P0)
−1. If possible,

we get a sequence of solutions,

P1 = P0 −Df(P0)
−1f(P0)

P2 = P1 −Df(P1)
−1f(P1)

... =
...

Pn = Pn−1 −Df(Pn−1)
−1f(Pn−1).

Suppose that the limit P∞ = limn→∞ Pn exists and that Df(P∞) is
invertible. As before, if we take the limit of both sides, this implies
that

f(P∞) = ~0.

Let us try a concrete example.

Example 11.7. Solve

x2 + y2 = 1

y2 = x3.

First we write down an appropriate function, f : R2 −→ R2, given
by f(x, y) = (x2 + y2 − 1, y2 − x3). Then we are looking for a point P
such that

f(P ) = (0, 0).

Then

Df(P ) =

(
2x 2y
−3x2 2y

)
.

The determinant of this matrix is

4xy + 6x2y = 2xy(2 + 3x).

Now if we are given a 2× 2 matrix(
a b
c d

)
,
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then we may write down the inverse by hand,

1

ad− bc

(
d −b
−c a

)
.

So

Df(P )−1 =
1

2xy(2 + 3x)

(
2y −2y
3x2 2x

)
So,

Df(P )−1f(P ) =
1

2xy(2 + 3x)

(
2y −2y
3x2 2x

) (
x2 + y2 − 1
y2 − x3

)
=

1

2xy(2 + 3x)

(
2x2y − 2y + 2x3y

x4 + 3x2y2 − 3x2 + 2xy2

)

One nice thing about this method is that it is quite easy to implement
on a computer. Here is what happens if we start with (x0, y0) = (5, 2),

(x0, y0) = (5.00000000000000, 2.00000000000000)

(x1, y1) = (3.24705882352941,−0.617647058823529)

(x2, y2) = (2.09875150983980, 1.37996311951634)

(x3, y3) = (1.37227480405610, 0.561220968705054)

(x4, y4) = (0.959201654346683, 0.503839504009063)

(x5, y5) = (0.787655203525685, 0.657830227357845)

(x6, y6) = (0.755918792660404, 0.655438554539110),

and if we start with (x0, y0) = (5, 5),

(x0, y0) = (5.00000000000000, 5.00000000000000)

(x1, y1) = (3.24705882352941, 1.85294117647059)

(x2, y2) = (2.09875150983980, 0.363541705259258)

(x3, y3) = (1.37227480405610,−0.306989760884339)

(x4, y4) = (0.959201654346683,−0.561589294711320)

(x5, y5) = (0.787655203525685,−0.644964218428458)

(x6, y6) = (0.755918792660404,−0.655519172668858).

One can sketch the two curves and check that these give reasonable
solutions. One can also check that (x6, y6) lie close to the two given
curves, by computing x2

6 + y2
6 − 1 and y2

6 − x3
6.
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