10. More about derivatives

The main result is:
Theorem 10.1. Let $A \subset \mathbb{R}^{n}$ be an open subset and let $f: A \longrightarrow \mathbb{R}^{m}$ be a function.

If the partial derivatives

$$
\frac{\partial f_{i}}{\partial x_{j}}
$$

exist and are continuous, then f is differentiable.
We will need:
Theorem 10.2 (Mean value theorem). Let $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and differentiable at every point of (a, b), then we may find $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Geometrically, 10.2 is clear. However it is surprisingly hard to give a complete proof.

Proof of (10.1). We may assume that $m=1$. We only prove this in the case when $n=2$ (the general case is similar, only notationally more involved). So we have

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

Suppose that $P=(a, b)$ and let $\overrightarrow{P Q}=h_{1} \hat{\imath}+h_{2} \hat{\jmath}$. Let

$$
P_{0}=(a, b) \quad P_{1}=\left(a+h_{1}, b\right) \quad \text { and } \quad P_{2}=\left(a+h_{1}, b+h_{2}\right)=Q
$$

Now

$$
f(Q)-f(P)=\left[f\left(P_{2}\right)-f\left(P_{1}\right)\right]+\left[f\left(P_{1}\right)-f\left(P_{0}\right)\right] .
$$

We apply the Mean value theorem twice. We may find Q_{1} and Q_{2} such that

$$
f\left(P_{1}\right)-f\left(P_{0}\right)=\frac{\partial f}{\partial x}\left(Q_{1}\right) h_{1} \quad \text { and } \quad f\left(P_{2}\right)-f\left(P_{1}\right)=\frac{\partial f}{\partial y}\left(Q_{2}\right) h_{2}
$$

Here Q_{1} lies somewhere on the line segment $P_{0} P_{1}$ and Q_{2} lies on the line segment $P_{1} P_{2}$. Putting this together, we get

$$
f(Q)-f(P)=\frac{\partial f}{\partial x}\left(Q_{1}\right) h_{1}+\frac{\partial f}{\partial y}\left(Q_{2}\right) h_{2}
$$

Thus

$$
\begin{aligned}
\frac{|f(Q)-f(P)-A \cdot \overrightarrow{P Q}|}{\|\overrightarrow{P Q}\|} & =\frac{\left|\left(\frac{\partial f}{\partial x}\left(Q_{1}\right)-\frac{\partial f}{\partial x}(P)\right) h_{1}+\left(\frac{\partial f}{\partial y}\left(Q_{2}\right)-\frac{\partial f}{\partial y}(P)\right) h_{2}\right|}{\|\overrightarrow{P Q}\|} \\
& \leq \frac{\left|\left(\frac{\partial f}{\partial x}\left(Q_{1}\right)-\frac{\partial f}{\partial x}(P)\right) h_{1}\right|}{\|\overrightarrow{P Q}\|}+\frac{\left|\left(\frac{\partial f}{\partial y}\left(Q_{2}\right)-\frac{\partial f}{\partial y}(P)\right) h_{2}\right|}{\|\overrightarrow{P Q}\|} \\
& \leq \frac{\left|\left(\frac{\partial f}{\partial x}\left(Q_{1}\right)-\frac{\partial f}{\partial x}(P)\right) h_{1}\right|}{\left|h_{1}\right|}+\frac{\left|\left(\frac{\partial f}{\partial y}\left(Q_{2}\right)-\frac{\partial f}{\partial y}(P)\right) h_{2}\right|}{\left|h_{2}\right|} \\
& =\left|\left(\frac{\partial f}{\partial x}\left(Q_{1}\right)-\frac{\partial f}{\partial x}(P)\right)\right|+\left|\left(\frac{\partial f}{\partial y}\left(Q_{2}\right)-\frac{\partial f}{\partial y}(P)\right)\right| .
\end{aligned}
$$

Note that as Q approaches P, Q_{1} and Q_{2} both approach P as well. As the partials of f are continuous, we have
$\lim _{Q \rightarrow P} \frac{|f(Q)-f(P)-A \cdot \overrightarrow{P Q}|}{\|\overrightarrow{P Q}\|} \leq \lim _{Q \rightarrow P}\left(\left|\left(\frac{\partial f}{\partial x}\left(Q_{1}\right)-\frac{\partial f}{\partial x}(P)\right)\right|+\left|\left(\frac{\partial f}{\partial y}\left(Q_{2}\right)-\frac{\partial f}{\partial y}(P)\right)\right|\right)=0$.
Therefore f is differentiable at P, with derivative A.
Example 10.3. Let $f: A \longrightarrow \mathbb{R}$ be given by

$$
f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

where $A=\mathbb{R}^{2}-\{(0,0)\}$. Then

$$
\frac{\partial f}{\partial x}=\frac{\left(x^{2}+y^{2}\right)^{1 / 2}-x(2 x)(1 / 2)\left(x^{2}+y^{2}\right)^{-1 / 2}}{x^{2}+y^{2}}=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
$$

Similarly

$$
\frac{\partial f}{\partial y}=-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

Now both partial derivatives exist and are continuous, and so f is differentiable, with derivative the gradient,

$$
\nabla f=\left(\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}},-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)=\frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}}\left(y^{2},-x y\right) .
$$

Lemma 10.4. Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
If $\vec{v} \in \mathbb{R}^{n}$ then

$$
\|A \vec{v}\| \leq K\|\vec{v}\|
$$

where

$$
K=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2} .
$$

Proof. Let $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}$ be the rows of A. Then the entry in the i th row of $A \vec{v}$ is $\vec{a}_{i} \cdot \vec{v}$. So,

$$
\begin{aligned}
\|A \vec{v}\|^{2} & =\left(\vec{a}_{1} \cdot \vec{v}\right)^{2}+\left(\vec{a}_{2} \cdot \vec{v}\right)^{2}+\cdots+\left(\vec{a}_{n} \cdot \vec{v}\right)^{2} \\
& \leq\left\|\vec{a}_{1}\right\|^{2}\|\vec{v}\|^{2}+\left\|\vec{a}_{2}\right\|^{2}\|\vec{v}\|^{2}+\cdots+\left\|\vec{a}_{n}\right\|^{2}\|\vec{v}\|^{2} \\
& =\left(\left\|\vec{a}_{1}\right\|^{2}+\left\|\vec{a}_{2}\right\|^{2}+\cdots+\left\|\vec{a}_{n}\right\|^{2}\right)\|\vec{v}\|^{2} \\
& =K^{2}\|\vec{v}\|^{2} .
\end{aligned}
$$

Now take square roots of both sides.
Theorem 10.5. Let $f: A \longrightarrow \mathbb{R}^{m}$ be a function, where $A \subset \mathbb{R}^{n}$ is open.

If f is differentiable at P, then f is continuous at P.
Proof. Suppose that $D f(P)=A$. Then

$$
\lim _{Q \rightarrow P} \frac{f(Q)-f(P)-A \cdot \overrightarrow{P Q}}{\| \overrightarrow{P Q}}=0
$$

This is the same as to require

$$
\lim _{Q \rightarrow P} \frac{\|f(Q)-f(P)-A \cdot \overrightarrow{P Q}\|}{\| \overrightarrow{P Q}}=0
$$

But if this happens, then surely

$$
\lim _{Q \rightarrow P}\|f(Q)-f(P)-A \cdot \overrightarrow{P Q}\|=0
$$

So

$$
\begin{aligned}
\|f(Q)-f(P)\| & =\|f(Q)-f(P)-A \cdot \overrightarrow{P Q}+A \cdot \overrightarrow{P Q}\| \\
& \leq\|f(Q)-f(P)-A \cdot \overrightarrow{P Q}\|+\|A \cdot \overrightarrow{P Q}\| \\
& \leq\|f(Q)-f(P)-A \cdot \overrightarrow{P Q}\|+K\|\overrightarrow{P Q}\| .
\end{aligned}
$$

Taking the limit as Q approaches P, both terms on the RHS go to zero, so that

$$
\lim _{Q \rightarrow P}\|f(Q)-f(P)\|=0
$$

and f is continuous at P.

