1. Vectors in \mathbb{R}^2 and \mathbb{R}^3

Definition 1.1. A vector $\vec{v} \in \mathbb{R}^3$ is a 3-tuple of real numbers (v_1, v_2, v_3) .

Hopefully the reader can well imagine the definition of a vector in \mathbb{R}^2 .

Example 1.2. (1,1,0) and $(\sqrt{2},\pi,1/e)$ are vectors in \mathbb{R}^3 .

Definition 1.3. The **zero vector** in \mathbb{R}^3 , denoted $\vec{0}$, is the vector (0,0,0). If $\vec{v} = (v_1, v_2, v_3)$ and $\vec{w} = (w_1, w_2, w_3)$ are two vectors in \mathbb{R}^3 , the **sum of** \vec{v} **and** \vec{w} , denoted $\vec{v} + \vec{w}$, is the vector $(v_1 + w_1, v_2 + w_2, v_3 + w_3)$.

If $\vec{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ is a vector and $\lambda \in \mathbb{R}$ is a **scalar**, the **scalar product of** λ **and** v, denoted $\lambda \cdot \vec{v}$, is the vector $(\lambda v_1, \lambda v_2, \lambda v_3)$.

Example 1.4. If $\vec{v} = (2, -3, 1)$ and $\vec{w} = (1, -5, 3)$ then $\vec{v} + \vec{w} = (3, -8, 4)$. If $\lambda = -3$ then $\lambda \cdot \vec{v} = (-6, 9, -3)$.

Lemma 1.5. If λ and μ are scalars and \vec{u} , \vec{v} and \vec{w} are vectors in \mathbb{R}^3 , then

- (1) $\vec{0} + \vec{v} = \vec{0}$.
- (2) $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.
- (3) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- $(4) \lambda \cdot (\mu \cdot \vec{v}) = (\lambda \mu) \cdot \vec{v}.$
- (5) $(\lambda + \mu) \cdot \vec{v} = \lambda \cdot \vec{v} + \mu \cdot \vec{v}$.
- (6) $\lambda \cdot (\vec{u} + \vec{v}) = \lambda \cdot \vec{u} + \lambda \cdot \vec{v}$.

Proof. We check (3). If $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$, then

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

= $(v_1 + u_1, v_2 + u_2, v_3 + u_3)$
= $\vec{v} + \vec{u}$.

We can interpret vector addition and scalar multiplication geometrically. We can think of a vector as representing a displacement from the origin. Geometrically a vector \vec{v} has a magnitude (or length) $|\vec{v}| = (v_1^2 + v_2^2 + v_3^2)^{1/2}$ and every non-zero vector has a direction

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|}.$$

Multiplying by a scalar leaves the direction unchanged and rescales the magnitude. To add two vectors \vec{v} and \vec{w} , think of transporting the tail of \vec{w} to the endpoint of \vec{v} . The sum of \vec{v} and \vec{w} is the vector whose tail is the tail of the transported vector.

One way to think of this is in terms of directed line segments. Note that given a point P and a vector \vec{v} we can add \vec{v} to P to get another point Q. If $P = (p_1, p_2, p_3)$ and $\vec{v} = (v_1, v_2, v_3)$ then

$$Q = P + \vec{v} = (p_1 + v_1, p_2 + v_2, p_3 + v_3).$$

If $Q = (q_1, q_2, q_3)$, then there is a unique vector \overrightarrow{PQ} , such that $Q = P + \overrightarrow{v}$, namely

$$\overrightarrow{PQ} = (q_1 - p_1, q_2 - p_2, q_3 - p_3).$$

Lemma 1.6. Let P, Q and R be three points in \mathbb{R}^3 . Then $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$.

Proof. Let us consider the result of adding $\overrightarrow{PQ} + \overrightarrow{QR}$ to P,

$$P + (\overrightarrow{PQ} + \overrightarrow{QR}) = (P + \overrightarrow{PQ}) + \overrightarrow{QR}$$
$$= Q + \overrightarrow{QR}$$
$$= R$$

On the other hand, there is at most one vector \overrightarrow{v} such that when we add it P we get R, namely the vector \overrightarrow{PR} . So $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$.

Note that (1.6) expresses the geometrically obvious statement that if one goes from P to Q and then from Q to R, this is the same as going from P to R.

Vectors arise quite naturally in nature. We can use vectors to represent forces; every force has both a magnitude and a direction. The combined effect of two forces is represented by the vector sum. Similarly we can use vectors to measure both velocity and acceleration. The equation

$$\vec{F} = m\vec{a},$$

is the vector form of Newton's famous equation.

Note that \mathbb{R}^3 comes with three standard unit vectors

$$\hat{i} = (1, 0, 0)$$
 $\hat{j} = (0, 1, 0)$ and $\hat{k} = (0, 0, 1)$,

which are called the *standard basis*. Any vector can be written uniquely as a linear combination of these vectors,

$$\vec{v} = (v_1, v_2, v_3) = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}.$$

We can use vectors to parametrise lines in \mathbb{R}^3 . Suppose we are given two different points P and Q of \mathbb{R}^3 . Then there is a unique line l containing P and Q. Suppose that R = (x, y, z) is a general point of

the line. Note that the vector \overrightarrow{PR} is parallel to the vector \overrightarrow{PQ} , so that PR is a scalar multiple of PQ. Algebraically,

$$\overrightarrow{PR} = t\overrightarrow{PQ},$$

for some scalar $t \in \mathbb{R}$. If $P = (p_1, p_2, p_3)$ and $Q = (q_1, q_2, q_3)$, then

$$(x - p_1, y - p_2, z - p_3) = t(q_1 - p_1, q_2 - p_2, q_3 - p_3) = t(v_1, v_2, v_3),$$

where $(v_1, v_2, v_3) = (q_1 - p_1, q_2 - p_2, q_3 - p_3)$. We can always rewrite this as,

$$(x, y, z) = (p_1, p_2, p_3) + t(v_1, v_2, v_3) = (p_1 + tv_1, p_2 + tv_2, p_3 + tv_3).$$

Writing these equations out in coordinates, we get

$$x = p_1 + tv_1$$
 $y = p_2 + tv_2$ and $z = p_3 + tv_3$.

Example 1.7. If P = (1, -2, 3) and Q = (1, 0, -1), then $\vec{v} = (0, 2, -4)$ and a general point of the line containing P and Q is given parametrically by

$$(x, y, z) = (1, -2, 3) + t(0, 2, -4) = (1, -2 + 2t, 3 - 4t).$$

Example 1.8. Where do the two lines l_1 and l_2

$$(x,y,z) = (1,-2+2t,3-4t)$$
 and $(x,y,z) = (2t-1,-3+t,3t)$, intersect?

We are looking for a point (x, y, z) common to both lines. So we have

$$(1, -2 + 2s, 3 - 4s) = (2t - 1, -3 + t, 3t).$$

Looking at the first component, we must have t = 1. Looking at the second component, we must have -2 + 2s = -2, so that s = 0. By inspection, the third component comes out equal to 3 in both cases. So the lines intersect at the point (1, -2, 3).

Example 1.9. Where does the line

$$(x, y, z) = (1 - t, 2 - 3t, 2t + 1)$$

intersect the plane

$$2x - 3y + z = 6$$
?

We must have

$$2(1-t) - 3(2-3t) + (2t+1) = 6.$$

Solving for t we get

$$9t - 3 = 6$$
,

so that t=1. The line intersects the plane at the point

$$(x, y, z) = (0, -1, 3).$$

Example 1.10. A cycloid is the path traced in the plane, by a point on the circumference of a circle as the circle rolls along the ground.

Let's find the parametric form of a cycloid. Let's suppose that the circle has radius a, the circle rolls along the x-axis and the point is at the origin at time t=0. We suppose that the cylinder rotates through an angle of t radians in time t. So the circumference travels a distance of at. It follows that the centre of the circle at time t is at the point P=(at,a). Call the point on the circumference Q=(x,y) and let O be the centre of coordinates. We have

$$(x,y) = \overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ}.$$

Now relative to P, the point Q just goes around a circle of radius a. Note that the circle rotates backwards and at time t=0, the angle $3\pi/2$. So we have

$$\overrightarrow{PQ} = (a\cos(3\pi/2 - t), a\sin(3\pi/2 - t)) = (-a\sin t, -a\cos t)$$

Putting all of this together, we have

$$(x,y) = (at - a\sin t, a - a\cos t).$$