SIXTH HOMEWORK, DUE THURSDAY OCTOBER 21ST

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a \mathcal{C}^{1}-function, and let C be the plane curve given by the equation $r=f(\theta)$ in polar coordinates. Show that the arc length of C is given by

$$
s(\theta)=\int_{\alpha}^{\theta} \sqrt{f(\tau)^{2}+\left(f^{\prime}(\tau)\right)^{2}} d \tau
$$

2. (5 pts) (3.1.18).
3. (10 pts) (3.1.26).
4. (10 pts) (3.1.30).
5. (5 pts) (3.1.32).
6. (10 pts) (3.2.7).
7. (10 pts) (3.2.12).
8. (10 pts) In this question, we prove the uniqueness statement of Theorem 2.5 on page 201 of the book. Let $\vec{r}_{1}: I \longrightarrow \mathbb{R}^{3}$ and $\vec{r}_{2}: I \longrightarrow$ \mathbb{R}^{3} be two smooth regular curves parametrised by arclength. Assume that $\kappa_{1}(s)=\kappa_{2}(s)$ and $\tau_{1}(s)=\tau_{2}(s)$, for every $s \in I$. Suppose that there is a point $a \in I$ where
$\vec{r}_{1}(a)=\vec{r}_{2}(a), \quad \vec{T}_{1}(a)=\vec{T}_{2}(a), \quad \vec{N}_{1}(a)=\vec{N}_{2}(a), \quad$ and $\quad \vec{B}_{1}(a)=\vec{B}_{2}(a)$.
(a) Show that the quantity

$$
\left\|\vec{T}_{1}(s)-\vec{T}_{2}(s)\right\|^{2}+\left\|\vec{N}_{1}(s)-\vec{N}_{2}(s)\right\|^{2}+\left\|\vec{B}_{1}(s)-\vec{B}_{2}(s)\right\|^{2},
$$

is a constant function of s. (Hint: Differentiate and use the FrenetSerret formulae.)
(b) Show that $\vec{r}_{1}(s)=\vec{r}_{2}(s)$, for all $s \in S$.
9. (10 pts) Let $\vec{r}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ be the helix given by

$$
\vec{r}(s)=a \cos \left(\frac{s}{c}\right) \hat{\imath}+a \sin \left(\frac{s}{c}\right) \hat{\jmath}+\frac{b s}{c} \hat{k},
$$

where

$$
c^{2}=a^{2}+b^{2} \quad a>0 \quad \text { and } \quad c>0
$$

(a) Show that \vec{r} is parametrised by arclength.
(b) Find $\vec{T}(s), \vec{N}(s)$ and $\vec{B}(s)$.
(c) Find $\kappa(s)$ and $\tau(s)$.
10. (10 pts) Suppose that $\vec{r}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ is a smooth regular curve parametrised by arclength. Suppose that the curvature and the torsion are constant, that is, suppose that there are constants κ and τ such that $\kappa(s)=\kappa$ and $\tau(s)=\tau$. Prove that \vec{r} is (congruent to) a helix. 11. (10 pts) Let $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ be a smooth regular curve. Let $a \in I$ and suppose that
$\vec{T}(a)=\frac{2}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}-\frac{1}{3} \hat{k}, \quad \vec{B}(a)=-\frac{1}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}+\frac{2}{3} \hat{k}, \quad \frac{d \vec{N}}{d s}(a)=-4 \hat{\imath}+2 \hat{\jmath}+5 \hat{k}$.
Find
(a) The normal vector $\vec{N}(a)$.
(b) The curvature $\kappa(a)$.
(c) The torsion $\tau(a)$.

Just for fun: Show that the implicit function theorem and the inverse function theorem are equivalent, that is, one can prove either result assuming the other result.

