FIFTH HOMEWORK, DUE THURSDAY OCTOBER 14TH

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) Find a recursive formula for a sequence of points $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, whose limit $\left(x_{\infty}, y_{\infty}\right)$, if it exists, is a point of intersection of the curves

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x^{2}(x+1) & =y^{2} .
\end{aligned}
$$

2. (10 pts) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function $f(x, y)=\cos (x y)+x^{3}+y^{2}$. Find a recursive formula for a sequence of points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots$, $\left(x_{n}, y_{n}\right)$, whose limit $\left(x_{\infty}, y_{\infty}\right)$, if it exists, is a critical point of the function f, that is, a point where $D f(x, y)=(0,0)$.
3. (10 pts) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is differentiable at $(-2,1)$ with derivative

$$
D f(-2,1)=\left(\begin{array}{ll}
-2 & 3 \\
-1 & 1
\end{array}\right)
$$

and that $f(-2,1)=(1,3)$. Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function $g\left(y_{1}, y_{2}\right)=$ $y_{1}^{2}-y_{2}^{2}$.
(a) Show that the composite function $g \circ f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is differentiable at $(-2,1)$.
(b) Find the derivative of $g \circ f$ at $(-2,1)$.
4. (10 pts) Let $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a \mathcal{C}^{1} function. Suppose that $F(4,-1,2)=$ $(0,0)$ and that

$$
D F(4,-1,2)=\left(\begin{array}{ccc}
1 & -1 & 4 \\
0 & 1 & -1
\end{array}\right)
$$

(a) Show that there is an open subset $U \subset \mathbb{R}$ containing 4 and a \mathcal{C}^{1} function $f: U \longrightarrow \mathbb{R}^{2}$ such that $f(4)=(-1,2)$ and such that

$$
F(x, f(x))=0,
$$

for every $x \in U$.
(b) Find the derivative $D f(4)$.
5. (10 pts) (a) Show that, in a neighbourhood of $(2,-1,1)$, the subset

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}=-1\right\}
$$

is the graph of a \mathcal{C}^{1} function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$.
(b) Determine

$$
\frac{\partial f}{\partial x}(2,-1) \quad \text { and } \quad \frac{\partial f}{\partial y}(2,-1)
$$

6. (10 pts) (2.5.9).
7. (10 pts) (2.5.11).
8. (10 pts) (2.5.22).
9. $(10 \mathrm{pts})(2.6 .21)$
10. (10 pts) (2.6.24).

Just for fun: For any $\epsilon>0$, find an example of a smooth function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that for $f(x)=0$, if $x \leq 0$ or $x \geq 1$ and $f(x)=1$ if $\epsilon<x<1-\epsilon$. (Hint: consider the function $g(x)=e^{-1 / x^{2}}$.)

