FOURTH HOMEWORK, DUE THURSDAY OCTOBER 7TH

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding. 1. (10 pts) (i) Where is the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, given by

$$f(x) = \begin{cases} 0 & x \text{ is rational} \\ 1 & x \text{ is irrational,} \end{cases}$$

continuous?

(ii) Where is the function $g: \mathbb{R} \longrightarrow \mathbb{R}$, given by

$$g(x) = \begin{cases} x & x \text{ is rational} \\ 2x & x \text{ is irrational,} \end{cases}$$

continuous?

2. (10 pts) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is any function, then $f(P) = (f_1(P), f_2(P), \dots, f_m(P)) = f_1(P)\hat{e}_1 + f_2(P)\hat{e}_2 + \dots + f_m(P)\hat{e}_m,$ where $f_1: \mathbb{R}^n \longrightarrow \mathbb{R}, f_2: \mathbb{R}^n \longrightarrow \mathbb{R}, \ldots, f_n: \mathbb{R}^n \longrightarrow \mathbb{R}$ are functions. (i) Show that if f is continuous, then so are f_1, f_2, \ldots, f_m . (ii) Show that if f_1, f_2, \ldots, f_m are continuous, then so is f. 3. (10 pts) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the function given f(x, y) = |xy|. (a) Show directly that f is differentiable at (0,0). (b) Show that the partial derivatives are not continuous in any neighbourhood of the origin. 4. (10 pts) Find a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial x} = 3x^2y^2 - xy\sin(xy) + \cos(xy)$ and $\frac{\partial f}{\partial y} = 2x^3y - x^2\sin(xy) + 3y^2$. 5. (10 pts) (2.3.21). 6. (10 pts) (2.3.25). 7. (10 pts) (2.3.30). 8. (10 pts) (2.3.31). 9. (10 pts) (2.3.33)10. (10 pts) (2.3.51). **Just for fun:** (i) Let $a \ge 0$ be a real number and let x be a real number. How does one define a^{x} ? You may use the fact that if

$$a_1 \leq a_2 \leq a_3 \dots,$$

is an increasing sequence of numbers which are bounded from above (that is, there is a real number M such that $a_i \leq M$), then the limit $\lim_{n\to\infty} a_n$ exists.

(ii) Let $a \ge 0$ be a real number. Show that the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x) = a^x$ is continuous.

(iii) Let a_1, a_2, \ldots, a_n be non-negative real numbers and let x_1, x_2, \ldots, x_n be non-negative real numbers whose sum is one. Show that

$$\prod_{i=1}^{n} a_i^{x_i} \le \sum_{i=1}^{n} x_i a_i.$$