FOURTH HOMEWORK, DUE THURSDAY OCTOBER 7TH

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) (i) Where is the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, given by

$$
f(x)= \begin{cases}0 & x \text { is rational } \\ 1 & x \text { is irrational }\end{cases}
$$

continuous?
(ii) Where is the function $g: \mathbb{R} \longrightarrow \mathbb{R}$, given by

$$
g(x)= \begin{cases}x & x \text { is rational } \\ 2 x & x \text { is irrational }\end{cases}
$$

continuous?
2. (10 pts) If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is any function, then
$f(P)=\left(f_{1}(P), f_{2}(P), \ldots, f_{m}(P)\right)=f_{1}(P) \hat{e}_{1}+f_{2}(P) \hat{e}_{2}+\cdots+f_{m}(P) \hat{e}_{m}$,
where $f_{1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}, f_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R}, \ldots, f_{n}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ are functions.
(i) Show that if f is continuous, then so are $f_{1}, f_{2}, \ldots, f_{m}$.
(ii) Show that if $f_{1}, f_{2}, \ldots, f_{m}$ are continuous, then so is f.
3. (10 pts) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function given $f(x, y)=|x y|$.
(a) Show directly that f is differentiable at $(0,0)$.
(b) Show that the partial derivatives are not continuous in any neighbourhood of the origin.
4. (10 pts) Find a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that
$\frac{\partial f}{\partial x}=3 x^{2} y^{2}-x y \sin (x y)+\cos (x y) \quad$ and $\quad \frac{\partial f}{\partial y}=2 x^{3} y-x^{2} \sin (x y)+3 y^{2}$.
5. (10 pts) (2.3.21).
6. (10 pts) (2.3.25).
7. (10 pts) (2.3.30).
8. (10 pts) (2.3.31).
9. (10 pts) (2.3.33)
10. (10 pts) (2.3.51).

Just for fun: (i) Let $a \geq 0$ be a real number and let x be a real number. How does one define a^{x} ? You may use the fact that if

$$
a_{1} \leq a_{2} \leq a_{3} \ldots,
$$

is an increasing sequence of numbers which are bounded from above (that is, there is a real number M such that $a_{i} \leq M$), then the limit $\lim _{n \rightarrow \infty} a_{n}$ exists.
(ii) Let $a \geq 0$ be a real number. Show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x)=a^{x}$ is continuous.
(iii) Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers and let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers whose sum is one. Show that

$$
\prod_{i=1}^{n} a_{i}^{x_{i}} \leq \sum_{i=1}^{n} x_{i} a_{i}
$$

