THIRD HOMEWORK, DUE THURSDAY SEPTEMBER 30TH

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) Let L be the line which passes through the point $(a, 0,0)$ and is parallel to the z-axis. Let D be the region that lies inside the cylinder of radius a centred around the line L and that lies between the planes $z=-1$ and $z=3$. Describe the region D in cylindrical coordinates.
2. (10 pts) Let D be the region inside the sphere of radius $2 a$ centred at the origin and that lies between the planes $x=-a$ and $x=a$. Describe the region D in spherical coordinates.
3. (15 pts) Suppose that $f: A \longrightarrow B$ and $g: B \longrightarrow C$ are two functions, and let $g \circ f: A \longrightarrow C$ be their composition. For each statement below, say whether the statement is true or false. If true, give a reason and if false give a counterexample.
(i) If f and g are surjective, then $g \circ f: A \longrightarrow C$ is surjective.
(ii) If $g \circ f: A \longrightarrow C$ is surjective, then f is surjective.
(iii) If $g \circ f: A \longrightarrow C$ is surjective, then g is surjective.
4. (10 pts) Let $S \subset \mathbb{R}^{3}$ be the right angled cone, with vertex at the origin and centred around the z-axis, and which lies on or above the $x y$-plane. Write down a function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ such that $S=f^{-1}(c)$ is the level set of f at height c.
5. (10 pts) (2.1.34).
6. (5 pts) (2.2.9).
7. $(5 \mathrm{pts})(2.2 .11)$.
8. (5pts) (2.2.13).
9. (5 pts) (2.2.15).
10. (5 pts) (2.2.31).
11. (5 pts) (2.2.35).
12. (5 pts) (2.2.42).

Just for fun: What is the volume of the intersection of three cylinders of radius r and height h ? Assume that the cylinders are centred around the three coordinate axes and that the central point of each cylinder is the origin.

